GR
G.M. Ribbers
8 records found
1
Object properties perceived through the tactile sense, such as weight, friction, and slip, greatly influence motor control during manipulation tasks. However, the provision of tactile information during robotic training in neurorehabilitation has not been well explored. Therefore
...
Direct biomechanical manipulation of human gait stability
A systematic review
People fall more often when their gait stability is reduced. Gait stability can be directly manipulated by exerting forces or moments onto a person, ranging from simple walking sticks to complex wearable robotics. A systematic review of the literature was performed to determine:
...
In stroke rehabilitation, simple robotic devices hold the potential to increase the training dosage in group therapies and to enable continued therapy at home after hospital discharge. However, we identified a lack of portable and cost-effective devices that not only focus on imp
...
System identification
A feasible, reliable and valid way to quantify upper limb motor impairments
Background: Upper limb impairments in a hemiparetic arm are clinically quantified by well-established clinical scales, known to suffer poor validity, reliability, and sensitivity. Alternatively, robotics can assess motor impairments by characterizing joint dynamics through system
...
Light-Weight Wearable Gyroscopic Actuators Can Modulate Balance Performance and Gait Characteristics
A Proof-of-Concept Study
Falling is a major cause of morbidity, and is often caused by a decrease in postural stability. A key component of postural stability is whole-body centroidal angular momentum, which can be influenced by control moment gyroscopes. In this proof-of-concept study, we explore the in
...
Transcranial direct current stimulation (tDCS) is a promising tool to improve and speed up motor rehabilitation after stroke, but inconsistent clinical effects refrain tDCS from clinical implementation. Therefore, this study aimed to assess the need for individualized tDCS config
...
Transcranial direct current stimulation (tDCS) over the contralateral primary motor cortex of the target muscle (conventional tDCS) has been described to enhance corticospinal excitability, as measured with transcranial magnetic stimulation. Recently, tDCS targeting the brain reg
...
Neurophysiologic correlates of motor learning that can be monitored during neurorehabilitation interventions can facilitate the development of more effective learning methods. Previous studies have focused on the role of the beta band (14–30 Hz) because of its clear response duri
...