Circular Image

26 records found

SENS3

Multisensory Database of Finger-Surface Interactions and Corresponding Sensations

The growing demand for natural interactions with technology underscores the importance of achieving realistic touch sensations in digital environments. Realizing this goal highly depends on comprehensive databases of finger-surface interactions, which need further development. He ...
Wearable devices that relocate tactile feedback from fingertips can enable users to interact with their physical world augmented by virtual effects. While studies have shown that relocating same-modality tactile stimuli can influence the one perceived at the fingertip, the intera ...
Wearable haptic displays that relocate feedback away from the fingertip provide a much-needed sense of touch to interactions in virtual reality, while also leaving the fingertip free from occlusion for augmented reality tasks. However, the impact of relocation on perceptual sensi ...
Object properties perceived through the tactile sense, such as weight, friction, and slip, greatly influence motor control during manipulation tasks. However, the provision of tactile information during robotic training in neurorehabilitation has not been well explored. Therefore ...

Tactile Weight Rendering

A Review for Researchers and Developers

Haptic rendering of weight plays an essential role in naturalistic object interaction in virtual environments. While kinesthetic devices have traditionally been used for this aim by applying forces on the limbs, tactile interfaces acting on the skin have recently offered potentia ...
Wearable vibrotactile actuators are non-intrusive and inexpensive means to provide haptic feedback directly to the user's skin. Complex spatiotemporal stimuli can be achieved by combining multiple of these actuators, using the funneling illusion. This illusion can funnel the sens ...

FeelPen

A Haptic Stylus Displaying Multimodal Texture Feels on Touchscreens

The ever-emerging mobile market induced a blooming interest in stylus-based interactions. Most state-of-the-art styluses either provide no haptic feedback or only deliver one type of sensation, such as vibration or skin stretch. Improving these devices with display abilities of a ...

ThermoSurf

Thermal display technology for dynamic and multi-finger interactions

Thermal feedback has been proven to enhance user experience in human-machine interactions. Yet state-of-the-art thermal technology has focused on the single finger or palm in static contact, overlooking dynamic and multi-finger interactions. The underlying challenges include inco ...

Learning to Feel Textures

Predicting Perceptual Similarities From Unconstrained Finger-Surface Interactions

Whenever we touch a surface with our fingers, we perceive distinct tactile properties that are based on the underlying dynamics of the interaction. However, little is known about how the brain aggregates the sensory information from these dynamics to form abstract representations ...
Pressing the fingertips into surfaces causes skin deformations that enable humans to grip objects and sense their physical properties. This process involves intricate finger geometry, non-uniform tissue properties, and moisture, complicating the underlying contact mechanics. Here ...
Wearable tactile displays can create the illusion of touching real textures by applying vibrations to the finger as it moves across a virtual surface. There are many possible methods of modulating this vibratory content with finger movement, each potentially best suited to differ ...
Electrovibration holds great potential for creating vivid and realistic haptic sensations on touchscreens. Ideally, a designer should be able to control what users feel independent of the number of fingers they use, the movements they make, and how hard they press. We sought to u ...
Realistic display of tactile textures on touch screens is a big step forward for haptic technology to reach a wide range of consumers utilizing electronic devices on a daily basis. Since the texture topography cannot be rendered explicitly by electrovibration on touch screens, it ...
Certain ungrounded asymmetric vibrations create a unidirectional force that makes the user feel as though their fingers are being pulled in a particular direction. However, although researchers have discovered this haptic feedback technique and showcased its success in a variety ...
One may notice a relatively wide range of tactile sensations even when touching the same hard, flat surface in similar ways. Little is known about the reasons for this variability, so we decided to investigate how the perceptual intensity of light stickiness relates to the physic ...
Masking has been used to study human perception of tactile stimuli, including those created on haptic touch screens. Earlier studies have investigated the effect of in-site masking on tactile perception of electrovibration. In this study, we investigated whether it is possible to ...
Both vision and touch contribute to the perception of real surfaces. Although there have been many studies on the individual contributions of each sense, it is still unclear how each modality's information is processed and integrated. To fill this gap, we investigated the similar ...
Future touch screen applications will include multiple tactile stimuli displayed simultaneously or consecutively to single finger or multiple fingers. These applications should be designed by considering human tactile masking mechanism since it is known that presenting one stimul ...