Circular Image

L. Marchal Crespo

35 records found

In stroke rehabilitation, simple robotic devices hold the potential to increase the training dosage in group therapies and to enable continued therapy at home after hospital discharge. However, we identified a lack of portable and cost-effective devices that not only focus on imp ...

Enhancing stroke rehabilitation with whole-hand haptic rendering

Development and clinical usability evaluation of a novel upper-limb rehabilitation device

INTRODUCTION: There is currently a lack of easy-to-use and effective robotic devices for upper-limb rehabilitation after stroke. Importantly, most current systems lack the provision of somatosensory information that is congruent with the virtual training task. This paper introduc ...
Purpose: Virtual Reality (VR) has proven to be an effective tool for motor (re)learning. Furthermore, with the current commercialization of low-cost head-mounted displays (HMDs), immersive virtual reality (IVR) has become a viable rehabilitation tool. Nonetheless, it is still an ...

Enhancing Motor Learning in Cycling Tasks

The Role of Model Predictive Control and Training Sequence

We evaluated the impact of Model Predictive Control (MPC) robotic-assisted versus unassisted training on motor learning of a complex bicycle steering task. Ten participants were divided into two groups, alternating between MPC-assisted and unassisted training to ride a steer-by-w ...
The provision of robotic assistance during motor training has proven to be effective in enhancing motor learning in some healthy trainee groups as well as patients. Personalizing such robotic assistance can help further improve motor (re)learning outcomes and cater better to the ...
A large proportion of stroke survivors suffer from sensory loss, negatively impacting their independence, quality of life, and neurorehabilitation prognosis. Despite the high prevalence of somatosensory impairments, our understanding of somatosensory interventions such as sensory ...
Object properties perceived through the tactile sense, such as weight, friction, and slip, greatly influence motor control during manipulation tasks. However, the provision of tactile information during robotic training in neurorehabilitation has not been well explored. Therefore ...
In current virtual reality settings for motor skill training, only visual information is usually provided regarding the virtual objects the trainee interacts with. However, information gathered through cutaneous (tactile feedback) and muscle mechanoreceptors (kinesthetic feedback ...

Tactile Weight Rendering

A Review for Researchers and Developers

Haptic rendering of weight plays an essential role in naturalistic object interaction in virtual environments. While kinesthetic devices have traditionally been used for this aim by applying forces on the limbs, tactile interfaces acting on the skin have recently offered potentia ...
Research on motor learning has found evidence that learning rate is positively correlated with the learner's motor variability. However, it is still unclear how to robotically promote that variability without compromising the learner's sense of agency and motivation, which are cr ...
Immersive Virtual Reality (IVR) has gained popularity in neurorehabilitation for its potential to increase patients’ motivation and engagement. A crucial yet relatively unexplored aspect of IVR interfaces is the patients’ representation in the virtual world, such as with an avata ...
Whole-hand haptic rendering could lead to more naturalistic and intuitive virtual hand-object interactions, which could be especially beneficial for applications such as sensorimotor robotic neurorehabilitation. However, the majority of previously proposed whole-hand haptic rende ...
Rehabilitation robotics combined with virtual reality using head-mounted displays enable naturalistic, immersive, and motivating therapy for people after stroke. There is growing interest in employing digital twins in robotic neurore-habilitation, e.g., in telerehabilitation for ...
Background: In the past decade, there has been substantial progress in the development of robotic controllers that specify how lower-limb exoskeletons should interact with brain-injured patients. However, it is still an open question which exoskeleton control strategies can more ...
High transparency is a fundamental requirement for upper-limb exoskeletons to promote active patient participation. Although various control strategies have been suggested to improve the transparency of these robots, there are still some limitations, such as the need for precise ...

“Tricking the Brain” Using Immersive Virtual Reality

Modifying the Self-Perception Over Embodied Avatar Influences Motor Cortical Excitability and Action Initiation

To offer engaging neurorehabilitation training to neurologic patients, motor tasks are often visualized in virtual reality (VR). Recently introduced head-mounted displays (HMDs) allow to realistically mimic the body of the user from a first-person perspective (i.e., avatar) in a ...
Background: The relearning of movements after brain injury can be optimized by providing intensive, meaningful, and motivating training using virtual reality (VR). However, most current solutions use two-dimensional (2D) screens, where patients interact via symbolic representatio ...
Developing motor and cognitive skills is needed to achieve expert (motor) performance or functional recovery from a neurological condition, e.g., after stroke. While extensive practice plays an essential role in the acquisition of good motor performance, it is still unknown wheth ...
To address the clinical need for high-intensity, repetitive sensorimotor hand training after stroke, we developed in a first step a novel haptic device for practicing finger movements. Because the thumb plays a fundamental role in the loss of autonomy and prehensile functions aft ...