CS
C. Silvestri
17 records found
1
Organ-on-chip (OOC) is becoming the alternative tool to conventional in vitro screening. Heart-on-chip devices including microstructures for mechanical and electrical stimulation have been demonstrated to be advantageous to study structural organization and maturation of heart ce
...
We present a novel method to easily and reliably transfer highly porous, large area, thin microfabricated Polydimethylsiloxane (PDMS) porous membranes on Lab-on-Chip (LOC) and Organ-on-Chip (OOC) devices. The use of silicon as carrier substrate and a water-soluble sacrificial lay
...
We present a novel and highly reproducible process to fabricate transferable porous PDMS membranes for PDMS-based Organs-on-Chips (OOCs) using microelectromechanical systems (MEMS) fabrication technologies. Porous PDMS membranes with pore sizes down to 2.0 μm in diameter and a wi
...
A novel, simple, low-cost method for the void-free filling of high aspect ratio (HAR) through-silicon-vias (TSVs) is presented. For the first-time pure indium, a type-I superconductor metal, is used to fill HAR vias, 300 to 500 μm in depth and 50 to 100 μm in diameter. The low el
...
The high aspect ratio and the porous nature of spatially oriented forest-like carbon nanotube (CNT) structures represent a unique opportunity to engineer a novel class of nanoscale assemblies. By combining CNTs and conformal coatings, a 3D lightweight scaffold with tailored behav
...
An unprecedented enhancement in electrical conductivity of horizontally aligned carbon nanotube (HA-CNT) structures using a 10 nm conformal coating of alumina (Al2O3) or amorphous silicon carbide (a-SiC) is presented. By combining the capability to grow long
...
The performances of microelectronic and optoelectronic devices are often severely limited by high temperatures and insufficient heat management. Therefore, when considering device fabrication and packaging, it is important to select materials based on their thermal performance. T
...
Polymeric (PEDOT:PSS) strain gauges embedded in PDMS membranes fabricated using a full wafer-scale fabrication process capable of realizing reproducible small features, are reported. The devices are characterized using a customized setup, which provides mechanical stretch while d
...
Thermal material properties play a fundamental role in the thermal management of microelectronic systems. The porous nature of carbon nanotube (CNT) arrays results in a very high surface area to volume ratio, which makes the material attractive for surface driven heat transfer me
...
Microelectrode arrays (MEAs) are widely used in biological application to locally stimulate and record the electrical activity of living cells. Here, a novel fabrication process for a carbon nanotube (CNT)-based MEA integrated on the backside of a free standing stretchable membra
...
PEDOT:PSS
A Conductive and Flexible Polymer for Sensor Integration in Organ-on-Chip Platforms
Sensing and stimulating microstructures are necessary to develop more specialized and highly accurate Organ-on-Chip (OOC) platforms. In this paper, we present the integration of a conductive polymer, poly (3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS), on a stretc
...
We present a silicon carbide (SiC) based surface micromachined nanoreactor for in-situ characterization of reactions between solid nanostructured materials and gasses in transmission electron microscopes (TEMs). For the first time SiC is used as construction material for this dev
...