WQ

W.F. Quiros Solano

13 records found

Optimal treatment of cancer requires diagnostic methods to facilitate therapy choice and prevent ineffective treatments. Direct assessment of therapy response in viable tumor specimens could fill this diagnostic gap. Therefore, we designed a microfluidic platform for assessment o ...
We present an extremely compact field effect transistor (FET)-based electrochemical sensor for in situ real-time and label-free measurement of ion concentrations in the cell culture area of organs-on-chip (OoCs) devices. This sensor replaces the functionality of an external refer ...
We present the first Organ-on-Chip equipped with a low-impedance Poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) MicroElectrode Array (MEA). The novel device allows simultaneous mechanical stimulation with a stretchable PDMS membrane and electrical monitoring v ...
Monitoring cell conditions and microenvironment in real time is crucial for Organ-on-Chip (OoC) functionality. In particular, biological cues such as ions, including metals and metabolites, play a critical role in physiology and homeostasis in the human body. • Real-time monitori ...
Drug development is a complex, time-consuming (10 - 15 years) and expensive process. For a new medicine to reach the market, the net expenses covered by the pharmaceutical industry have been estimated to be around $2.6 billion. Nevertheless, the risk of finding adverse effects or ...
Organ-on-chip (OOC) is becoming the alternative tool to conventional in vitro screening. Heart-on-chip devices including microstructures for mechanical and electrical stimulation have been demonstrated to be advantageous to study structural organization and maturation of heart ce ...
We present a novel method to easily and reliably transfer highly porous, large area, thin microfabricated Polydimethylsiloxane (PDMS) porous membranes on Lab-on-Chip (LOC) and Organ-on-Chip (OOC) devices. The use of silicon as carrier substrate and a water-soluble sacrificial lay ...
We present a novel and highly reproducible process to fabricate transferable porous PDMS membranes for PDMS-based Organs-on-Chips (OOCs) using microelectromechanical systems (MEMS) fabrication technologies. Porous PDMS membranes with pore sizes down to 2.0 μm in diameter and a wi ...

Advances in the Electronics for Cyclic Voltammetry

The Case of Gas Detection by Using Microfabricated Electrodes

This paper presents an advanced voltammetric system to be used as electronic tongue for liquid and gas analysis. It has been designed to be more flexible and accurate with respect to other existing and similar systems. It features improved electronics and additional operative con ...
Polymeric (PEDOT:PSS) strain gauges embedded in PDMS membranes fabricated using a full wafer-scale fabrication process capable of realizing reproducible small features, are reported. The devices are characterized using a customized setup, which provides mechanical stretch while d ...
Organ-on-Chips (OOCs) are micro-fabricated devices which are used to culture cells in order to mimic functional units of human organs. The devices are designed to simulate the physiological environment of tissues in vivo. Cells in some types of OOCs can be stimulated in situ by e ...

PEDOT:PSS

A Conductive and Flexible Polymer for Sensor Integration in Organ-on-Chip Platforms

Sensing and stimulating microstructures are necessary to develop more specialized and highly accurate Organ-on-Chip (OOC) platforms. In this paper, we present the integration of a conductive polymer, poly (3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS), on a stretc ...