D.J. Thoen
62 records found
1
Understanding telescope pointing (i.e. line of sight) is important for observing the cosmic microwave background (CMB) and astronomical objects. The Moon is a candidate astronomical source for pointing calibration. Although the visible size of the Moon (30`) is larger
...
Achieving amplification with high gain and quantum-limited noise is a difficult problem to solve. Parametric amplification using a superconducting transmission line with high kinetic inductance is a promising technology not only to solve this problem but also adding several benef
...
Geometry dependence of two-level-system noise and loss in a - Si C
H parallel-plate capacitors for superconducting microwave resonators
Parallel-plate capacitors (PPC) significantly reduce the size of superconducting microwave resonators, reducing the pixel pitch for arrays of single-photon energy-resolving kinetic inductance detectors (KIDs). The frequency noise of KIDs is typically limited by tunneling two-leve
...
Kinetic inductance detectors (KIDs) are superconducting energy-resolving detectors, sensitive to single photons from the near-infrared to ultraviolet. We study a hybrid KID design consisting of a β-phase tantalum (β-Ta) inductor and a Nb-Ti-N interdigitated capacitor. The devices
...
Aims. Future actively cooled space-borne observatories for the far-infrared, loosely defined as a 1-10 THz band, can potentially reach a sensitivity limited only by background radiation from the Universe. This will result in an increase in observing speed of many orders of magnit
...
DESHIMA 2.0
Development of an Integrated Superconducting Spectrometer for Science-Grade Astronomical Observations
Integrated superconducting spectrometer (ISS) technology will enable ultra-wideband, integral-field spectroscopy for (sub)millimeter-wave astronomy, in particular, for uncovering the dust-obscured cosmic star formation and galaxy evolution over cosmic time. Here, we present the d
...
Typical materials for optical Microwave Kinetic Inductance Detetectors (MKIDs) are metals with a natural absorption of ∼ 30–50% in the visible and near-infrared. To reach high absorption efficiencies (90–100%) the KID must be embedded in an optical stack. We show an optical stack
...
Hydrogenated Amorphous Silicon Carbide
A Low-Loss Deposited Dielectric for Microwave to Submillimeter-Wave Superconducting Circuits
Low-loss deposited dielectrics will benefit superconducting devices such as integrated superconducting spectrometers, superconducting qubits, and kinetic inductance parametric amplifiers. Compared with planar structures, multilayer structures such as microstrips are more compact
...
A focal plane array of extended-hemispherical silicon lenses coupled to aluminum coplanar-waveguide (CPW) Microwave Kinetic Inductance Detectors (MKIDs) has been designed to operate at 7.8 THz. Low-dispersive leaky-wave radiation has been used to efficiently illuminate the antire
...
Superconducting resonators and transmission lines are fundamental building blocks of integrated circuits for millimeter-submillimeter astronomy. Accurate simulation of radiation loss from the circuit is crucial for the design of these circuits because radiation loss increases wit
...
We present a "mix-and-match"process to create large structures with submicrometer features by combining UV contact lithography and 100 kV electron-beam lithography in a single layer of negative-tone resist: Micro-Resist-Technology ma-N1405. The resist is successfully applied for
...
Advances in far infrared astronomy have been, and will be, defined by instrument capabilities. Especially relevant is the development of imaging spectrometers for the wavelength range of 0.03-3 mm, which are not available at all at this moment. We will discuss recent advances in
...
Superconducting circuit elements used in millimeter-submillimeter (mm-submm) astronomy would greatly benefit from deposited dielectrics with small dielectric loss and noise. This will enable the use of multilayer circuit elements and thereby increase the efficiency of mm-submm fi
...
We measure temperature-dependent quasiparticle fluctuations in a small Al volume, embedded in a NbTiN superconducting microwave resonator. The resonator design allows for readout close to equilibrium. By placing the Al film on a membrane, we enhance the fluctuation level and sepa
...
A noiseless, photon-counting detector, which resolves the energy of each photon, could radically change astronomy, biophysics, and quantum optics. Superconducting detectors promise an intrinsic resolving power at visible wavelengths of R=E/δE≈100 due to their low excitation energ
...
A superconducting microstrip half-wavelength resonator is proposed as a suitable band-pass filter for broadband moderate spectral resolution spectroscopy for terahertz (THz) astronomy. The proposed filter geometry has a free spectral range of an octave of bandwidth without introd
...
The idea that preformed Cooper pairs could exist in a superconductor at temperatures higher than its zero-resistance critical temperature (Tc) has been explored for unconventional, interfacial, and disordered superconductors, but direct experimental evidence is lacking
...
This paper describes the microfabrication and electrical characterization of aluminum-coated superconducting through-silicon vias (TSVs) with sharp superconducting transition above 1 K. The sharp superconducting transition was achieved by means of fully conformal and void-free DC
...
We present a lab-on-chip experiment to accurately measure losses of superconducting microstrip lines at microwave and submillimeter wavelengths. The microstrips are fabricated from Nb-Ti-N, which is deposited using reactive magnetron sputtering, and amorphous silicon which is dep
...