AE
A. Endo
72 records found
1
Context. Integrated superconducting spectrometers (ISSs) for wide-band submillimeter (submm) astronomy use quasi-optical systems for coupling radiation from the telescope to the instrument. Misalignment in these systems is detrimental to the system performance. The common method
...
Many superconducting on-chip filter-banks suffer from poor coupling to the detectors behind each filter. This is a problem intrinsic to the commonly used half-wavelength filter, which has a maximum theoretical coupling of 50 %. In this paper, we introduce a phase-coherent filter,
...
Correction to
Directional Filter Design and Simulation for Superconducting On-Chip Filter-Banks (Journal of Low Temperature Physics, (2024), 216, 1-2, (144-153), 10.1007/s10909-024-03118-w)
In this article, the wrong figure appeared as Figures 1 and 2; the figure should have appeared as shown below Figure 1 (right side of the figure only): (Figure presented.) Figure 2: (Figure presented.)@en
Terahertz Integral Field Unit with Universal Nanotechnology (TIFUUN) is a wideband spectral mapper operating at (sub)-millimeter wavelengths. The instrument is under development for ground-based astronomy and will be deployed to the ASTE telescope in Chile. In this work, the buil
...
2023 Astrophotonics Roadmap
Pathways to realizing multi-functional integrated astrophotonic instruments
Photonic technologies offer numerous functionalities that can be used to realize astrophotonic instruments. The most spectacular example to date is the ESO Gravity instrument at the Very Large Telescope in Chile that combines the light-gathering power of four 8 m telescopes throu
...
We present a "mix-and-match"process to create large structures with submicrometer features by combining UV contact lithography and 100 kV electron-beam lithography in a single layer of negative-tone resist: Micro-Resist-Technology ma-N1405. The resist is successfully applied for
...
TiEMPO
Open-source time-dependent end-To-end model for simulating ground-based submillimeter astronomical observations
The next technological breakthrough in millimeter–submillimeter astronomy is three-dimensional imaging spectrometry with wide instantaneous spectral bandwidths and wide fields of view. The total optimization of the focal-plane instrument, the telescope, the observing strategy, an
...
Superconducting circuit elements used in millimeter-submillimeter (mm-submm) astronomy would greatly benefit from deposited dielectrics with small dielectric loss and noise. This will enable the use of multilayer circuit elements and thereby increase the efficiency of mm-submm fi
...
Superconducting resonators and transmission lines are fundamental building blocks of integrated circuits for millimeter-submillimeter astronomy. Accurate simulation of radiation loss from the circuit is crucial for the design of these circuits because radiation loss increases wit
...
Advances in far infrared astronomy have been, and will be, defined by instrument capabilities. Especially relevant is the development of imaging spectrometers for the wavelength range of 0.03-3 mm, which are not available at all at this moment. We will discuss recent advances in
...
Hydrogenated Amorphous Silicon Carbide
A Low-Loss Deposited Dielectric for Microwave to Submillimeter-Wave Superconducting Circuits
Low-loss deposited dielectrics will benefit superconducting devices such as integrated superconducting spectrometers, superconducting qubits, and kinetic inductance parametric amplifiers. Compared with planar structures, multilayer structures such as microstrips are more compact
...
Deshima 2.0
Rapid Redshift Surveys and Multi-line Spectroscopy of Dusty Galaxies
We present a feasibility study for the high-redshift galaxy part of the Science Verification Campaign with the 220–440 GHz deshima 2.0 integrated superconducting spectrometer on the ASTE telescope. The first version of the deshima 2.0 chip has been recently manufactured and teste
...
DESHIMA 2.0
Development of an Integrated Superconducting Spectrometer for Science-Grade Astronomical Observations
Integrated superconducting spectrometer (ISS) technology will enable ultra-wideband, integral-field spectroscopy for (sub)millimeter-wave astronomy, in particular, for uncovering the dust-obscured cosmic star formation and galaxy evolution over cosmic time. Here, we present the d
...
A superconducting microstrip half-wavelength resonator is proposed as a suitable band-pass filter for broadband moderate spectral resolution spectroscopy for terahertz (THz) astronomy. The proposed filter geometry has a free spectral range of an octave of bandwidth without introd
...
This paper discusses the science case for a sensitive spectro-polarimetric survey of the microwave sky. Such a survey would provide a tomographic and dynamic census of the three-dimensional distribution of hot gas, velocity flows, early metals, dust, and mass distribution in the
...
We present a lab-on-chip experiment to accurately measure losses of superconducting microstrip lines at microwave and submillimeter wavelengths. The microstrips are fabricated from Nb-Ti-N, which is deposited using reactive magnetron sputtering, and amorphous silicon which is dep
...
A superconducting on-chip microstrip filter bank spectrometer prototype for Far-Infrared (FIR) Astronomy is presented. The measurements showcase its capabilities towards moderate spectral resolution (f/\Delta f\sim 500) broadband FIR spectroscopy. In this sub-mm-wave filter bank,
...
TiEMPO
Open-source time-dependent end-To-end model for simulating ground-based submillimeter astronomical observations
The next technological breakthrough in millimeter-submillimeter astronomy is 3D imaging spectrometry with wide instantaneous spectral bandwidths and wide fields of view. The total optimization of the focal-plane instrument, the telescope, the observing strategy, and the signal-pr
...