JG

J. Galan Lopez

13 records found

In an industrial context, selecting an appropriate crystal plasticity (CP) model that balances efficiency and accuracy when modelling deformation texture (DT) is crucial. This study compared DTs in IF-steel after undergoing cold rolling reductions using different CP models for tw ...
This article details the ESAFORM Benchmark 2021. The deep drawing cup of a 1 mm thick, AA 6016-T4 sheet with a strong cube texture was simulated by 11 teams relying on phenomenological or crystal plasticity approaches, using commercial or self-developed Finite Element (FE) codes, ...
This study proposes a new approach to determine phenomenological or physical relations between microstructure features and the mechanical behavior of metals bridging advanced statistics and materials science in a study of the effect of hard precipitates on the hardening of metal ...

Advanced Crystal Plasticity Modeling of Multi-Phase Steels

Work-Hardening, Strain Rate Sensitivity and Formability

This work presents an advanced crystal plasticity model for the simulation of the mechanical behavior of multiphase advanced high-strength steels. The model is based on the Visco-Plastic Self-Consistent (VPSC) model and uses information about the material’s crystallographic textu ...

A multivariate grain size and orientation distribution function

Derivation from electron backscatter diffraction data and applications

Two of the microstructural parameters most influential in the properties of polycrystalline materials are grain size and crystallographic texture. Although both properties have been extensively studied and there are a wide range of analysis tools available, they are generally con ...
A cellular automaton algorithm for curvature-driven coarsening is applied to a cold-rolled interstitial-free steel's microstructure - obtained through electron backscatter diffraction (EBSD). Recrystallization nucleation occurs naturally during the simulation, due to the highly h ...
Crystal plasticity models attempt to reproduce the complex deformation processes of polycrystalline metals based on a virtual representation of the real microstructure. When choosing this representation, a compromise must be made between level of detail at the local level and sta ...
The third generation of advanced high strength steels shows promising properties for automotive applications. The macroscopic mechanical response of this generation can be further improved by a better understanding of failure mechanisms on the microstructural level and micro-mech ...
Bainitic steels, as a third generation of advanced high strength steels, are potential steel grades for automotive applications. Two grades of bainitic steels with low and high silicon content, with three different thermal treatments per grade and therefore different second phase ...
In this article, the capacity of the Visco-Plastic Self-Consistent model (VPSC) as a constitutive model for the simulation of cold-rolled Ti–6Al–4V under a diverse set of loading conditions is investigated. The model uses information about the material crystallographic texture an ...
Multiphase bainitic steels, as a third generation of advanced high strength steels, show promising properties for automotive applications. Understanding the micro-mechanisms of damage initiation during plastic deformation is a key to further mechanical properties enhancement. The ...
Recently, the third generation of advanced high strength steels (AHSSs) show promising properties for automotive applications. The improvement of macroscopic mechanical performance is not feasible without a deep understanding of the micromechanical behavior and failure micro-mech ...
Plastic deformation of metallic materials is an inherently anisotropic process as a result of the presence of preferential orientations in their crystallographic texture. Crystal plasticity modeling, which allows simulating the response of polycrystal aggregates taking into accou ...