MD
Martin Diehl
7 records found
1
Predicting microstructure and (micro-)texture evolution during thermo-mechanical processing requires the combined simulation of plastic deformation and recrystallization. Here, a simulation approach based on the coupling of a full-field dislocation density based crystal plasticit
...
High-resolution three-dimensional crystal plasticity simulations are used to investigate deformation heterogeneity and microstructure evolution during cold rolling of interstitial free (IF-) steel. A Fast Fourier Transform (FFT)-based spectral solver is used to conduct crystal pl
...
Physics-based crystal plasticity models rely on certain statistical assumptions about the collective behavior of dislocation populations on one slip system and their interactions with the dislocations on the other slip systems. One main advantage of using such physics-based const
...
The capability of high-resolution modeling of crystals subjected to large plastic strain is essential in predicting many important phenomena occurring in polycrystalline materials, such as microstructure, deformation localization and in-grain texture evolution. However, due to th
...
A severe obstacle for the routine use of crystal plasticity models is the effort associated with determining their constitutive parameters. Obtaining these parameters usually requires time-consuming micromechanical tests that allow probing of individual grains. In this study, a n
...
This is a viewpoint paper on recent progress in the understanding of the microstructure–property relations of advanced high-strength steels (AHSS). These alloys constitute a class of high-strength, formable steels that are designed mainly as sheet products for the transportation
...
Low-alloyed steels with body-centered cubic crystal structure are a material class that is widely used for sheet metal forming applications. When having an adequate crystallographic texture and microstructure, their mechanical behavior is characterized by an isotropic in-plane fl
...