DP

Dirk Ponge

14 records found

Authored

Steel production accounts for approximately 8% of all global CO2 emissions, with the primary steelmaking route using iron ores accounting for about 80% of those emissions, mainly due to the use of fossil-based reductants and fuel. Hydrogen-based reduction of iron oxide is an alte ...

Steels with medium manganese (Mn) content (3∼12 wt-%) have emerged as a new alloy class and received considerable attention during the last decade. The microstructure and mechanical response of such alloys show significant differences from those of established steel grades, es ...

Iron making is the biggest single cause of global warming. The reduction of iron ores with carbon generates about 7% of the global carbon dioxide emissions to produce ≈1.85 billion tons of steel per year. This dramatic scenario fuels efforts to re-invent this sector by using r ...

Fossil-free ironmaking is indispensable for reducing massive anthropogenic CO 2 emissions in the steel industry. Hydrogen-based direct reduction (HyDR) is among the most attractive solutions for green ironmaking, with high technology readiness. The und ...

Hydrogen-based direct reduction of iron oxide at 700°C

Heterogeneity at pellet and microstructure scales

Steel production causes a third of all industrial CO 2 emissions due to the use of carbon-based substances as reductants for iron ores, making it a key driver of global warming. Therefore, research efforts aim to replace these reductants with sustainab ...

In conventional processing, metals go through multiple manufacturing steps including casting, plastic deformation, and heat treatment to achieve the desired property. In additive manufacturing (AM) the same target must be reached in one fabrication process, involving solidific ...

Beyond Solid Solution High-Entropy Alloys

Tailoring Magnetic Properties via Spinodal Decomposition

Since its first emergence in 2004, the high-entropy alloy (HEA) concept has aimed at stabilizing single- or dual-phase multi-element solid solutions through high mixing entropy. Here, this strategy is changed and renders such massive solid solutions metastable, to trigger spin ...

This is a viewpoint paper on recent progress in the understanding of the microstructure–property relations of advanced high-strength steels (AHSS). These alloys constitute a class of high-strength, formable steels that are designed mainly as sheet products for the transportati ...

The combination of different phase constituents to realize a mechanical composite effect for superior strength-ductility synergy has become an important strategy in microstructure design in advanced high-strength steels. Introducing multiple phases in the microstructure essent ...

Chemical boundary engineering

A new route toward lean, ultrastrong yet ductile steels

For decades, grain boundary engineering has proven to be one of the most effective approaches for tailoring the mechanical properties of metallic materials, although there are limits to the fineness and types of microstructures achievable, due to the rapid increase in grain si ...

We combined experimental investigations and theoretical calculations to unveil an abnormal magnetic behavior caused by addition of the nonmagnetic element Cu in face-centered-cubic FeNiCoMn-based high-entropy alloys (HEAs). Upon Cu addition, the probed HEAs show an increase of ...

Severe lattice distortion is a core effect in the design of multiprincipal element alloys with the aim to enhance yield strength, a key indicator in structural engineering. Yet, the yield strength values of medium- and high-entropy alloys investigated so far do not substantial ...

Invar effects in FeNiCo medium entropy alloys

From an Invar treasure map to alloy design

To facilitate the understanding of Invar effects and design of FeNiCo-base Invar alloys characterized by low thermal expansion coefficient (TEC), we investigated the magnetic and thermal expansion behavior of an equiatomic prototype medium entropy alloy FeNiCo and a non-equiat ...

Ultrafine austenite-ferrite duplex medium Mn steels often show a discontinuous yielding phenomenon, which is not commonly observed in other composite-like multiphase materials. The underlying dislocation-based mechanisms are not understood. Here we show that medium Mn steels w ...