HS
H. Springer
7 records found
1
Steel production accounts for approximately 8% of all global CO2 emissions, with the primary steelmaking route using iron ores accounting for about 80% of those emissions, mainly due to the use of fossil-based reductants and fuel. Hydrogen-based reduction of iron oxide is an alte
...
Out of the multitude of researched processing routes for sustainable ironmaking, hydrogen-based direct reduction and hydrogen plasma smelting reduction (HyPSR) are currently the most promising candidates for a successful industrial application. Both processes operate under gaseou
...
Iron- and steelmaking cause ∼7% of the global CO
2 emissions, due to the use of carbon for the reduction of iron ores. Replacing carbon by hydrogen as the reductant offers a pathway to massively reduce these emissions. However, the production of hydrogen
...
Hydrogen-based direct reduction of iron oxide at 700°C
Heterogeneity at pellet and microstructure scales
Steel production causes a third of all industrial CO
2 emissions due to the use of carbon-based substances as reductants for iron ores, making it a key driver of global warming. Therefore, research efforts aim to replace these reductants with sustainably
...
To successfully transition from fossil-fuel to sustainable carbon-free energy carriers, a safe, stable and high-density energy storage technology is required. The combustion of iron powders seems very promising in this regard. Yet, little is known about their in-process morpholog
...
Iron- and steelmaking is the largest single industrial CO
2 emitter, accounting for 6.5% of all CO
2 emissions on the planet. This fact challenges the current technologies to achieve carbon-lean steel production and to align with
...
This is a viewpoint paper on recent progress in the understanding of the microstructure–property relations of advanced high-strength steels (AHSS). These alloys constitute a class of high-strength, formable steels that are designed mainly as sheet products for the transportation
...