F.H.W. Körmann
55 records found
1
This work aims to predict the microstructure of recrystallized medium and high-entropy alloys (MEAs and HEAs) with a face-centered cubic structure, in particular the density of annealing twins and their thickness. Eight MEAs and five HEAs from the Cr-Mn-Fe-Co-Ni system are consid
...
Complex concentrated alloys (CCAs) with a face-centered-cubic (FCC) structure exhibit remarkable mechanical properties, introducing the expansion of compositional space in alloy design for structural materials. The formation of a single solid-solution phase is enabled by configur
...
In multicomponent materials, short-range order (SRO) is the development of correlated arrangements of atoms at the nanometer scale. Its impact in compositionally complex materials has stimulated an intense debate within the materials science community. Understanding SRO is critic
...
Anharmonicity in bcc refractory elements
A detailed ab initio analysis
Explicit anharmonicity, defined as the vibrational contribution beyond the quasiharmonic approximation, is qualitatively different between the group V and group VI bcc refractory elements. Group V elements show a small and mostly negative anharmonic entropy, whereas group VI elem
...
We present an analysis of temperature-dependent atomic short-range ordering and phase stability of the face-centered cubic CrCoNi medium-entropy alloy employing a combination of ab initio calculations and on-lattice machine learning interatomic potentials. Temperature-dependent p
...
High- and medium-entropy alloys (HEAs and MEAs) possess high solid-solution strength. Numerous investigations have been conducted on its impact on yield strength, however, there are limited reports regarding the relation between solid-solution strengthening and strain-hardening r
...
We present the magnetic Moment Tensor Potentials (mMTPs), a class of machine-learning interatomic potentials, accurately reproducing both vibrational and magnetic degrees of freedom as provided, e.g., from first-principles calculations. The accuracy is achieved by a two-step mini
...
Physical properties of ten single-phase FCC CrxMn20Fe20Co20Ni40-x high-entropy alloys (HEAs) were investigated for 0 ≤ x ≤ 26 at%. The lattice parameters of these alloys were nearly independent of composition while
...
Thermodynamics up to the melting point in a TaVCrW high entropy alloy
Systematic ab initio study aided by machine learning potentials
Multi-principal-component alloys have attracted great interest as a novel paradigm in alloy design, with often unique properties and a vast compositional space auspicious for materials discovery. High entropy alloys (HEAs) belong to this class and are being investigated for prosp
...
High-entropy alloys are solid solutions of multiple principal elements that are capable of reaching composition and property regimes inaccessible for dilute materials. Discovering those with valuable properties, however, too often relies on serendipity, because thermodynamic allo
...
The phase stability of a bcc AlNbTiV high-entropy alloy at elevated temperatures is studied using a combination of machine-learning interatomic potentials, first-principles calculations, and Monte Carlo simulations. The simulations reveal a B2 ordering below about 1700 K, mainly
...
Design of compositionally complex catalysts
Role of surface segregation
Besides revealing excellent mechanical properties, compositionally complex alloys are also very promising candidates for applications in heterogeneous catalysis. The opportunity provided by the tremendously large composition phase space to explore new materials and tune the mater
...
Element-resolved local lattice distortion in complex concentrated alloys
An observable signature of electronic effects
Complex concentrated alloys (CCAs) are of growing interest due to their outstanding mechanical properties that exceed the property limits of conventional alloys. Whereas the superior properties are often attributed to severe lattice distortion, to date it is not clear what contro
...
An active learning approach to train machine-learning interatomic potentials (moment tensor potentials) for multicomponent alloys to ab initio data is presented. Employing this approach, the disordered body-centered cubic (bcc) TiZrHfTax system with varying Ta concentration is in
...
Interstitial alloying has become an important pillar in tuning and improving the materials properties of high-entropy alloys, e.g., enabling interstitial solid-solution hardening and for tuning the stacking fault energies. In this work we performed ab initio calculations to evalu
...
The interface method is a well established approach for predicting melting points of materials using interatomic potentials. However, applying the interface method is tedious and involves significant human intervention. The whole procedure involves several successive tasks: estim
...
Multi-principal element alloys usually exhibit outstanding strength and toughness at cryogenic temperatures, especially in CrMnFeCoNi and CrCoNi alloys. These remarkable cryogenic properties are attributed to the occurrence of deformation twins, and it is envisaged that a reduced
...
Precipitation strengthening has been the basis of physical metallurgy since more than 100 years owing to its excellent strengthening effects. This approach generally employs coherent and nano-sized precipitates, as incoherent precipitates energetically become coarse due to their
...
Beyond Solid Solution High-Entropy Alloys
Tailoring Magnetic Properties via Spinodal Decomposition
Since its first emergence in 2004, the high-entropy alloy (HEA) concept has aimed at stabilizing single- or dual-phase multi-element solid solutions through high mixing entropy. Here, this strategy is changed and renders such massive solid solutions metastable, to trigger spinoda
...
Negative stacking fault energies (SFEs) are found in face-centered cubic high-entropy alloys with excellent mechanical properties, especially at low temperatures. Their roles remain elusive due to the lack of in situ observation of nanoscale deformation. Here, the polymorphism of
...