Finite-temperature interplay of structural stability, chemical complexity, and elastic properties of bcc multicomponent alloys from ab initio trained machine-learning potentials
More Info
expand_more
expand_more
Abstract
An active learning approach to train machine-learning interatomic potentials (moment tensor potentials) for multicomponent alloys to ab initio data is presented. Employing this approach, the disordered body-centered cubic (bcc) TiZrHfTax system with varying Ta concentration is investigated via molecular dynamics simulations. Our results show a strong interplay between elastic properties and the structural ω phase stability, strongly affecting the mechanical properties. Based on these insights we systematically screen composition space for regimes where elastic constants show little or no temperature dependence (elinvar effect).