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An active learning approach to train machine-learning interatomic potentials (moment tensor potentials) for
multicomponent alloys to ab initio data is presented. Employing this approach, the disordered body-centered
cubic (bcc) TiZrHfTax system with varying Ta concentration is investigated via molecular dynamics simulations.
Our results show a strong interplay between elastic properties and the structural ω phase stability, strongly
affecting the mechanical properties. Based on these insights we systematically screen composition space for
regimes where elastic constants show little or no temperature dependence (elinvar effect).

DOI: 10.1103/PhysRevMaterials.5.073801

I. INTRODUCTION

Parameter-free simulation techniques to access structural
stability and mechanical properties of materials are a vital
element in computer-aided materials design [1–6]. In partic-
ular, the vast composition phase space of multicomponent
alloys with multiple principal elements, which are often re-
ferred to as chemically complex alloys or high entropy alloys
(HEAs) [7–9], features tremendous opportunities to explore
and design next-generation materials by means of computer
simulations [10–12].

Many materials properties, e.g., elastic constants, feature
a qualitatively very different behavior if finite-temperature
contributions are taken into account [13–16]. For exam-
ple, thermal expansion typically causes a strong decrease of
elastic constants. However, for some materials these prop-
erties can also be remarkably insensitive to temperature. A
temperature-invariant elastic behavior of materials, referred
to as elinvar effect, is, e.g., known for multicomponent Ni-
based alloys [17–19]. Recently, the elinvar effect has also
been reported for elemental body-centered cubic (bcc) Ti [20].
The inclusion of finite-temperature effects is thus crucial for
a reliable prediction of the mechanical properties of materials
at elevated temperatures.

Besides the principal challenge to include finite-
temperature contributions, the alloys’ phase stability can
further impact materials properties [16,21–23]. In Ti, for
example, the high-temperature bcc phase is unstable at
low temperatures (see, e.g., Ref. [24]). The inclusion of
finite-temperature effects is thus unavoidable to stabilize
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bcc Ti and determine its properties, in particular the elastic
properties. For multicomponent alloys, the interplay between
the chemical environment and finite temperature effects
brings about further challenges for atomistic simulations as
compared to the treatment of pure metals. For example, in
chemically complex bcc alloys, being in the focus of the
present work, the distinction between a distorted bcc lattice
and an ω-type structure is not straightforward anymore. This
issue has recently been discussed and analyzed by a projected
displacement scheme that allows one to disentangle these
delicate structural features [25]. However, this detection
scheme has been mainly limited to ground state structural
analysis and did not involve any analysis on its relation to
elastic properties.

Density functional theory calculations (DFT) have been
successfully utilized to compute phase stability as well as
elastic properties of multicomponent alloys [10,26–28]. Most
of these studies were limited to 0 K. Alternative approaches
that allow one to include finite-temperature effects, such as
ab initio molecular dynamics (MD) simulations, are often too
computationally expensive to study multicomponent alloys.

The advent of machine-learning interatomic potentials
(MLIPs) [29,30] has made it possible to significantly reduce
the computational costs of pure DFT calculations and to
access materials properties with near DFT accuracy while
preserving the computational efficiency [31] of classical inter-
atomic potentials [20,32,33]. MLIPs have rapidly advanced in
the past decade, resulting in a number of approaches [34–38].
They offer a particularly efficient way to tackle the challenges
associated with HEAs [29]. A fundamental requirement of
MLIP-based approaches is a well-defined training set which
contains information about all relevant and often a priori
unknown phases and configurations (see, e.g, Ref. [39]).
One way to tackle this issue are active learning (AL)
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schemes [40–44], which allow on-the-fly accumulation of the
required training data. For compositionally complex alloys,
particularly if they show structural instabilities, a nonautoma-
tized and a priori manual selection of relevant configurations
is challenging and may dramatically limit the application
range of these potentials.

In the present work we propose an AL-based framework
that employs DFT calculations, MLIP training, and MD sim-
ulations. Utilizing this framework we resolve the delicate
interplay of structural stability (ω vs bcc), elastic proper-
ties (elastic constant tensor), and chemical composition for
refractory bcc high entropy alloys. Based on these results
we derive composition-temperature dependent ω-bcc phase
diagrams and show how the structural transition is strongly
reflected in the elastic properties.

II. METHODS

A. MLIP software

Most calculations for the present work are performed with
the software named “MLIP,” which was developed at the
Skolkovo Institute of Science and Technology and can be
obtained from Ref. [45]. The corresponding Python interface,
MLIPPY, is available from Ref. [46]. For a recent MLIP tutorial
paper including several examples and applications we refer to
Ref. [47].

B. Moment tensor potentials

For studying finite-temperature properties we employ
MD simulations in combination with machine-learning in-
teratomic potentials, namely the moment tensor potentials
(MTPs) proposed for single-component systems in Ref. [48]
and extended to multicomponent systems in Refs. [49,50].
MTPs are local potentials, i.e., the energy E (x) of an atom-
istic configuration x of size Na is assumed to be composed
of contributions from individual atoms with site energies Ei,
defined by atomic coordinates r and chemical types z in the
vicinity (neighborhood) of an atom i as

E (x) =
Na∑
i=1

Ei(r, z). (1)

The neighborhood of the atom i includes all atoms within
a given cutoff radius from the central atom. Therefore, the
calculational expenses scale as for classical interatomic po-
tentials, linearly with the number of atoms Na. For the present
work a cutoff value of 5 Å has been chosen. This includes
up to the third nearest-neighbor shell for the investigated
TiZrHfTax alloys. We verified that further increasing the cut-
off does not improve the quality of the interatomic potential.

The site energies from Eq. (1) are parametrized in terms of
the internal MTP parameters Cα:

E (x) =
Na∑

i=1

Ei(r, z) =
Na∑

i=1

Vi(Cα ), (2)

where Vi(Cα ) defines the interatomic potential and form of the
potential energy surface (PES) provided by MTP. The func-
tional form of Vi(Cα ) is given in Ref. [50]. The parameters
Cα are determined during the training procedure. This means

essentially to solve a minimization problem with respect to
the coefficients Cα , where the functional to be minimized
is the sum of squared differences between MTP-predicted
and DFT-based energies (or, optionally, forces and stresses as
well) [47,50].

The training process of MTPs is parallelized and employs
an efficient quasi-Newton BFGS [51] minimization method
which does not require second derivatives of the minimized
functional with respect to the fitting coefficients (only first
derivatives).

In the whole process, the computational time for gen-
erating the training set (i.e., performing the required DFT
calculations) consumes the vast majority of the computational
expenses.

The special functional form of MTPs takes into account
multibody interactions while the total number of parameters
to fit, and thus the amount of required DFT data, scales as m2

with the number of species m. The quadratic scaling makes
MTPs extremely efficient in particular for multicomponent
alloys.

C. Active learning: Overview

The main goal of the AL procedure is to simultaneously
sample the training data (i.e., atomistic configurations) and
to train the MTP on the most relevant sampling data. This
significantly reduces any active intervention by the user which
is particularly important when dealing with complex alloys in
high-dimensional chemical composition space as is the case
for HEAs, where otherwise very elaborate and sophisticated
manual selection of training data would be required [39].

For MTPs, the AL relies on a measure of extrapolation
for a given atomistic configuration. This quantity γ is called
extrapolation grade and it provides an uncertainty measure
of the MTP-predicted quantities for a given configuration.
Mathematical details as well as different interpretations of the
extrapolation grade for MTPs can be found in Ref. [52].

The actual determination of γ is based on the so-called
MaxVol criterion [53]. This criterion provides a measure of
how much the current training set should be expanded in terms
of volume in the highly multidimensional space of the MTP
internal parameters [52]. The goal of the AL procedure is to
maximize the volume of the training domain, thus ensuring
that no point (configuration) remains outside this domain and
thus no extrapolation happens.

Typical values for γ classifying the status of a given con-
figuration are as follows.

γ < 1: interpolation case.
1 < γ < 2–5: “safe” extrapolation case.
5–10 < γ : “severe” extrapolation case.
During AL simulations the extrapolation grade is simul-

taneously computed along with the application of the MTP,
for example, in MD. If γ exceeds some predefined thresh-
old value, the potential can be retrained with additional
data and the MD simulation can be restarted. If the given
threshold value is not exceeded, the potential interpolates (or,
depending on the actual value of γ , extrapolates) during the
entire simulation run and no retraining is performed.

The AL procedure starts either with an empty training set
(i.e., randomly initialized potential parameters) or with an
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FIG. 1. Graphical illustration of the active learning scheme. (I) Configurations are sampled from MD trajectories (#N is the trajec-
tory of a certain AL iteration). (II) Sampled configurations are shortlisted based on the MaxVol criterion. (III) After assigning DFT
energies/forces/stresses they are appended to the training set. (IV) Training of a new MTP able to “work” in larger configurational space.
This procedure is repeated until no new configurations are sampled from the MD trajectory (AL iteration #50). All numerical values are
approximate, but they provide a correct overview of the typical AL procedure and are valid for the present research as well.

initial training set, e.g., of configurations with presumably
high relevance based on a priori knowledge of the material
under investigation. For a high entropy alloy, for example,
this could be a set of randomly disordered configurations. In
our case we initiated the training set with DFT relaxation tra-
jectories of random configurations with different Ta content.
During the simulation and first MD steps, the initial point
in configurational space is extended and the AL algorithm
complements the training set with the relevant configurations
from the so far unknown regions of the configurational space.
Once enough relevant configurations are gathered into the
training set, the retrained potential can be used to continue
the simulation without further retraining.

D. Active learning: Scheme

The AL scheme used in the present work is based on the
approach proposed for single-component systems in Ref. [52]
and extended to multicomponent cases in Refs. [49,50]. For
the MD simulations we use the LAMMPS [54] package ([55])
in combination with the MTPs from the MLIP package as force
fields. In the present work, the AL approach with MTPs is
applied to a multicomponent problem in combination with
MD. The illustration of the algorithm is provided in Fig. 1
and consists of the following steps.

(I) Sampling. A LAMMPS simulation starts and continues
until it encounters a case of significant extrapolation (trajecto-
ries #1 to #20 in Fig. 1). The simulation is then terminated and
all configurations with γ exceeding the predefined selection
threshold are sampled from the current MD trajectory for the
next AL step.

This process can be parallelized to accelerate the conver-
gence and gathering of relevant training data by conducting
several simulations in parallel (differing, e.g., by initial ve-

locity distributions, element compositions, starting structures,
etc.).

If the AL algorithm does not detect further configurations
beyond the threshold at this step, the potential is sufficiently
trained and ready for performing the actual simulations of
interest.

(II) Selection of samples. After each stage of sampling, the
accumulated list of configurations to be added to the training
list could, in principle, contain similar configurations, e.g.,
with very similar atomic positions. Since the DFT calculations
consume more than 90% of the whole AL procedure, only
the most relevant samples providing the most unique infor-
mation to the potential should be considered. To that end, we
again resort to the MaxVol criterion to shortlist not more than
50–100 configurations to be sent to DFT in each sampling
step. Note that for the MaxVol criterion and hence for the
selection procedure the atomic geometric arrangement is suf-
ficient (i.e., unlabeled data), while energies or forces are not
required.

(III) DFT processing of selected samples. At this stage
we perform static DFT calculations for the selected samples
assigning DFT energies, forces, and stresses to them. With
this the data becomes “labeled” and suitable for (re)training.

(IV) (Re)training. The new set of labeled data is added
to the training set and the potential is retrained. After re-
training, during subsequent MD runs the potential will not
consider these previously sampled configurations as extrap-
olations anymore and thus not break the MD calculation as
sketched in Fig. 1.

E. Active learning: Usage

Here we specify the application of the AL approach to the
problem addressed in the present work, i.e., the prediction of
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elastic constants for a given set of alloys and temperatures by
means of MD simulations.

Before carrying out the elastic constants calculations one
needs to determine the temperature-dependent equilibrium
volume for each alloy. This is done via standard NPT sim-
ulations. Already during these initial NPT simulations, the
sampling scheme provides relevant configurations for training
the potential. Eventually, the goal is to predict elastic con-
stants via stress-strain relations. In practice the applied strains
are about ≈1%. The respective displacements of individual
atoms for such strains are much smaller as compared to typical
displacements due to thermal vibrations at elevated tempera-
tures. Given that MTPs are local potentials that decompose a
given configuration into a set of neighborhoods, the structures
entering the training set from the NPT calculations provide
already a subset of the configurations required for the strain
simulations. This way, starting the AL with NPT simulations
at different temperatures does not only provide the equilib-
rium volumes versus temperature but allows us already to
gather relevant samples for training of the potential for the
subsequent elastic constant (strain) simulations.

For the Ti-Zr-Hf-Ta alloys in the focus of our investigations
further retraining is, however, needed. The main reason for
that is a phase transformation in the considered composition
range. At temperatures below 900 K some alloys tend to trans-
form into ω-like structures (Sec. II F). If MTPs are trained
only on bcc structures, encountering ω structures results in
high extrapolation grades (see Fig. 1), which indicates the
necessity of further retraining. Nevertheless, it is important
to stress that, even though the MTP is initially trained on
bcc configurations only, the AL approach successfully reveals
regimes of bcc lattice instability and enables the prediction of
the transition to ω-like structures [25].

In Sec. IV we study several alloy compositions in a broad
temperature range (300–2500 K). A single MTP has been
constructed with the above AL scheme and used for all com-
positions and temperatures. The potential has been trained
on 96 chemical configurations of TiZrHfTax with varying
Ta concentrations between 0 and 33 at. %. For each con-
centration, 12 random configurations have been considered.
Apart from greatly simplifying the process of training, using
a single potential provides coherent results among different
temperatures/concentrations.

F. Structural descriptor for ω vs bcc

For unary metals with ideal bcc lattice we can distinguish
the low-temperature ω phase and the high-temperature bcc
phase based on their crystallographic symmetry differences
(note though that the defective ω structures with line chain
defects have to be carefully considered [24]). In contrast,
for chemically disordered alloys like the here investigated
TiZrHfTax alloys (Sec. IV), this is not straightforwardly pos-
sible, because the ideal crystallographic symmetry is broken
due to lattice distortions caused by the chemical disorder.
To overcome this difficulty, an approach utilizing projected
atomic displacements was recently proposed [25]. This ap-
proach utilizes the fact that the ω structure can be obtained
by a martensitic transformation from the bcc structure via
atomic displacements along one of the 〈111〉bcc directions. In

FIG. 2. Planar projections of bcc and ω-like structures obtained
by averaging over the MD trajectories of two SQS samples, along
with the results of the adaptive CNA analysis (bottom panels) [56].

particular, the magnitudes of atomic displacements along the
possible directions of such a transformation are analyzed. The
relevant details of this approach are given in the following.

In a first step, the average atomic positions 〈ri〉 of an MD
trajectory are computed, with i labeling the atoms. The dis-
placements with respect to the ideal bcc lattice sites rbcc,ideal

i
are then given by

〈di〉 = 〈ri〉 − rbcc,ideal
i . (3)

Note that the such obtained 〈di〉 do not contain any time de-
pendency of atomic vibrations due to the averaging over MD
steps in 〈ri〉 and also that the reference rbcc,ideal

i are adequately
shifted so that the sum of the displacements over atoms is
zero. The averaged atomic positions do include, however, the
implicit temperature-dependent impact of vibrations, e.g., the
stabilization of the bcc phase at higher temperatures. Exam-
ples of averaged atomic geometries are given in Fig. 2. The
such obtained 〈di〉 are then projected onto the four possi-
ble directions of the ω-bcc transformation [111]bcc, [11̄1̄]bcc,
[1̄11̄]bcc, and [1̄1̄1]bcc (Fig. 3) with further averaging over all
MD snapshots and over all atoms providing

p[111]bcc ≡ |〈d〉 · e[111]bcc | = 1

n

n∑
i=1

|〈di〉 · e[111]bcc |, (4)

and three similar quantities corresponding to the other direc-
tions:

p[11̄1̄]bcc
, p[1̄11̄]bcc

, p[1̄1̄1]bcc
. (5)
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FIG. 3. Illustration of the p〈111〉bcc directions onto which the
atomic displacements are projected. These directions correspond to
the possible martensitic variants of the transformation from bcc to
ω, which, for pure elemental bcc systems, would be symmetrically
equivalent.

These quantities are sorted according to their values in de-
scending order and denoted as

p1, p2, p3, p4. (6)

The measure of proximity of an arbitrary structure with re-
spect to the ω structure, i.e., the structural descriptor, is then
characterized either by p1 or by p1 − p2 [25].

In our case we use the p1 − p2 measure as it provides a zero
value for a purely bcc-like structure, when no displacement
direction is preferred over another. In contrast to this, for ω-
like structures (Fig. 7) an anisotropy is observed in one of
the four possible displacement directions due to the preferred
transformation from bcc towards ω-like structures. The unit
for the pi values is cω, the lattice parameter of the ω-structure
coherent to the given bcc structure with lattice parameter abcc

(taken for each composition/temperature correspondingly). It
is given as

cω =
√

3

2
abcc. (7)

We provide the results of the application of this scheme to the
series of TiZrHfTax alloys in Sec. IV.

III. TECHNICAL DETAILS

A. DFT calculations

DFT calculations were carried out with VASP [57–60] using
the projector augmented wave (PAW) method [61] and the
Perdew-Burke-Ernzehof generalized gradient approximation
(PBE-GGA) [62] for the exchange correlation energy.

The plane wave cutoff energy was chosen to be 250 eV and
k-point meshes of 3 × 3 × 3 for 54- and 128-atom supercells
were employed for the different alloys. The Methfessel-
Paxton method (order 1) with a smearing parameter of 0.1 eV
was used. The following numbers of electrons were treated
as valence in the PAW potentials: 10 for Ti, 12 for Zr, 10
for Hf, and 11 for Ta. We used 54-atom supercells for Ta
concentrations of 0 at. %, 5.6 at. %, 11.1 at. %, 16.6 at. %, and
33.3 at. % and 128-atom supercells for 2.1 at. %, 3.5 at. %,
and 8.3 at. % to improve the resolution in the composition

TABLE I. Accuracy of the MTP developed for TiZrHfTax . Note
that a single MTP is utilized to describe the TiZrHfTax system with
varying Ta content from 0 at. % to 33 at. % including chemically
disordered bcc and ω-like structures in a wide temperature range as
given in the table. Errors are measured on a validation set sampled
from MD runs at different temperatures which were not part of the
training set.

Number of fitting parameters 932
Temperature range (K) 100–2500
Size of the final training set 3853
Energy RMSE (meV/atom) 8.6
Force componentwise RMSE (eV/Å) 0.148

space. In total 3432 and 421 configurations of 54-atom and
128-atom supercells, respectively, were eventually used to
train the potential.

B. MTP fitting

An overview of the MTP fitting data and quality of fitting
is provided in Table I. The MTP energy accuracy for the
TiZrHfTax alloys is 8.6 meV/atom. We attribute this compa-
rably large value to the fact that a single MTP was used to
fit a broad range of temperatures including the (pre)melting
region, a range of different Ta concentrations, and also two
crystallographically different phases, namely ω-like and bcc.
To verify this we inspect the mean average energy difference,

〈�E〉 = 〈�EDFT − EMTP〉 := �E (x, T ), (8)

where the average is performed for each considered com-
position and temperature over six different configurations.
The results are shown in Fig. 4, revealing that the largest
contribution to the overall energy RMSE comes from the high-

FIG. 4. Distribution of the energy per atom errors vs temperature
and Ta content for the TiZrHfTax alloys. The largest contribution to
the RMSE of the energies, �E (x, T ), in Table I is stemming from the
region where the simulations reveal overheating (premelting). Also,
energies of ω-like structures (low Ta content and low temperatures)
are predicted less accurately than those for the bcc structures (the
structural distinction is discussed in Sec. IV). Note that fit preference
was given to forces rather than energies to improve the reproduction
of the dynamic and elastic properties. The Ta concentration on the x
axis is plotted in logarithmic scale to improve the visualization (“0”
represents here zero Ta concentration though).
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FIG. 5. Correlation between DFT and MTP forces from NV T
MD trajectories for T � 1500 K.

temperature region, which, as will be discussed in Sec. IV
below, can be attributed to an overheating regime in the un-
derlying MD simulations [63]. To also illustrate the quality of
the MTP forces specifically for the crystalline structures (ω
and bcc), we provide a correlation plot in Fig. 5 for the DFT
and MTP forces for the respective MD trajectories from the
validation set.

C. MD simulations

For the MD simulations we used LAMMPS with the fitted
MTP as an interatomic potential. For each temperature T
the equilibrium volumes V = Veq(T ) were obtained from the
initial NPT runs. To compute the elastic constants as well
as the displacement projections to detect the structural ω-bcc
stability (Sec. IV), simulations were carried out utilizing NV T
ensembles with a time step of 1 fs for in total 60 000 MD
steps. The first 10 000 MD steps from these were neglected
for equilibration and the remaining 50 000 MD steps were
used to perform the average for computing the stresses and
atomic displacements.

D. Chemical disorder

To mimic chemical disorder, we used 432-atom bcc su-
percells and populated the lattice sites with the constitutive
elements according to the special quasirandom structure
(SQS) approach [64]. For generating the SQS we used the
ATAT package [65,66] and the MCSQS procedure [67], utilizing
a Monte Carlo algorithm to minimize the pair correlations for
the first two shells. The resulting correlation mismatch was on
average less than 0.01. The following Ta atomic concentra-
tions, x, were considered for TiZrHfTax, namely 0 at. %, 2.1
at. %, 3.5 at. %, 5.6 at. %, 8.3 at. %, 11.1 at. %, 16.6 at. %,
and 33.3 at. %.

For detecting the ω-bcc stability, 24 SQS structures per
composition and per temperature were considered and four
different SQS structures were chosen to compute the elastic
constants.

FIG. 6. Composition- and temperature-dependent equilibrium
lattice constant a(x, T ) and bulk modulus B(x, T ) of TiZrHfTax . The
bulk modulus reveals a fingerprint of the ω-bcc transition at low
temperatures and small Ta concentrations, which is not observed in
the lattice parameter.

E. Elastic constants

We computed the elastic constants via stress-strain re-
lations with deformations of ±1% applied in the uniaxial
regime, separately for each Ci j (Voigt notation). We then av-
eraged the elastic constants over the three crystallographically
equivalent directions assuming cubic symmetry as

C̃11 := 1
3 (C11 + C22 + C33), (9)

C̃12 := 1
3 (C12 + C13 + C23), (10)

C̃44 := 1
3 (C44 + C55 + C66), (11)

with the bulk modulus given as

B = C̃11 + 2C̃12

3
. (12)

Note that the above formulas assume cubic symmetry as
anticipated for the random solid solution. This symmetry may
be broken in the presence of ω-like structures.

IV. RESULTS AND DISCUSSION

We first discuss the composition and temperature depen-
dence of the equilibrium lattice constant, a(x, T ), of the
TiZrHfTax alloys as derived from the NPT simulations. As
shown in Fig. 6(a) we do not observe any remarkable pecu-
liarities at low temperatures. The lattice constant decreases
smoothly with increasing Ta concentration, which is a direct
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FIG. 7. Structural descriptor, i.e., the averaged difference be-
tween the two largest displacements, (p1 − p2)(x, T ), for TiZrHfTax

depending on Ta concentration x and temperature. Different struc-
tural phases can be clearly classified according to the different value
regimes of the structural descriptor. The high-temperature region
provides high values of (p1 − p2) due to the loss of crystalline
structure; therefore, our ω-bcc descriptor is not meaningful here.

consequence of the smaller size of Ta as compared to the
larger sizes of Zr and Hf and also to the element-averaged size
of TiZrHf. The negligible impact of the ω to bcc transforma-
tion on the lattice constant and thus volume is consistent with
the results found for pure Ti [24]. It is a consequence of the
displacive nature of the transformation. But, as we will discuss
further below, the transformation can have a significant impact
on computed elastic properties. A fingerprint of the transfor-
mation can be already found in the bulk modulus dependency
shown in Fig. 6(b). At room temperature an anomaly is ob-
served between 0 and about 7 at. % Ta concentration.

In order to detect the structural ω-bcc phase transi-
tion we utilize the recently proposed projected displacement
method [25] as also described in Sec. II F above. As a descrip-
tor for this purpose we utilize the difference between the two
largest projected displacement values (p1 − p2)(x, T ), de-
pending on Ta concentration and temperature. This is shown
in Fig. 7, where the values have been determined by averag-
ing over 24 SQS structures. We observe three very distinct
regimes. At low temperatures and low Ta content, the values
for (p1 − p2) are clearly nonzero, indicating the presence of
ω-like structures. For larger Ta content and higher tempera-
tures (p1 − p2) approaches zero (no preferential displacement
direction), revealing the stability of the bcc phase. At high
temperatures we observe a strong anisotropic behavior of
(p1 − p2). We trace back this feature to an artifact due to
overheating of the material. Regarding the ω-bcc stability
there is a clear and well-pronounced gradient in (p1 − p2)
allowing us to distinguish both phases.

For the TiZrHf alloy (i.e., no Ta at all) we predict a transi-
tion temperature of about 700 K. This value is slightly lower
compared to the value of 900 K found using explicit AIMD
simulations [25]. The origin is the larger supercell with 432
atoms utilized in the present work, compared to the 54-atom
supercells used in Ref. [25]. As discussed in Ref. [24] for the
case of pure Ti, a 54-atom supercell size may overestimate
the ω-bcc transition temperature by about 200 K. A careful
supercell size convergence test revealed that the 432-atom

FIG. 8. Composition- and temperature-dependent elastic con-
stant C̃44(x, T ) for TiZrHfTax assuming cubic symmetry. Negative
values are cropped to zero and correspond to the dark-blue area. The
dashed black line at the top of the plot corresponds to the melting
temperature. The melting temperature has been approximated by lin-
early mixing the melting temperatures of the individual constituents.

cells used in this study provide well converged transition
temperatures [24].

We now discuss how the structural stability impacts the
elastic properties. For this purpose we consider NV T ensem-
bles (see Sec. II E above) with fixed cubic shape. The volume
at each temperature is fixed to the corresponding equilibrium
one. The results for C̃44 are presented in Fig. 8. Due to the
fixed cubic shape, the elastic constants are negative (cropped
to zero for visualization purposes) in the regime where the ω

phase becomes stable. This is consistent with the pronounced
anisotropic character of the displacive projections shown in
Fig. 7. An important outcome of comparing Figs. 7 and 8 is the
clear correlation of the ω-bcc transition with the magnitude of
the elastic constant C̃44 (other elastic constants are provided
in the Appendix). The observed negative elastic constants
for high temperatures indicate that the bcc phase becomes
unstable against the liquid phase [68]. Since the actual compu-
tation of the melting temperature is beyond the present scope,
we do not analyze this further. We note, however, that the
composition trend of the derived negative elastic constants at
high temperatures is consistent with the melting temperatures
derived by linear mixing from the experimental values of the
individual constituents.

In order to further highlight the correlation and interplay
of the ω descriptors and elastic constants we show in Fig. 9
the temperature dependencies of the C̃44(T ) elastic constant
along with the (p1 − p2)(T ) structural descriptors for several
Ta concentrations. A striking observation is how sensitively
the temperature dependence of the elastic constants depends
on the Ta concentration. A near-zero C̃44 elastic constant in-
dicates that the bcc phase is dynamically unstable. It is also
consistent with the fact that the structural descriptors (p1 −
p2) become nonzero and thus indicate ω formation. This cor-
relation between C̃44 and (p1 − p2) is not only observed for
severely unstable cases, Figs. 9(c) and 9(d), but is also present
for alloys which are bcc stable in the whole temperature range,
Fig. 9(a). At very high temperatures, overheating results in
negative C̃44 elastic constants and finite values of (p1 − p2).
Both results are related to the loss of crystal structure, indi-
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FIG. 9. Comparison between the C̃44 elastic constant and the
order parameter of the ω-bcc transition. Error bars correspond to the
two-σ confidence interval. The large errors at low temperatures are
caused by the instability of the bcc phase.

cating that the bcc phase becomes unstable against the liquid
phase. Since this phase is not in the focus of the present work
we do not analyze it further.

The temperature dependence for many of the considered
alloys shows an anomalous behavior: The elastic constants
increase with temperature until they reach a maximum after
which they decrease. The origin of this behavior is a compe-
tition between two factors: The stabilization of the bcc phase

with temperature results in an increase of elastic constants,
while the volume expansion with increasing temperature de-
creases them. This competition can be used to design alloys
with elastic constants that are constant over large temperature
ranges, as can be seen, e.g., in Fig. 9(a). Similar effects have
been recently reported for bcc Ti [20]. With our ML-based
scheme multicomponent alloys can be effectively screened
to achieve desired temperature-dependent behavior of elastic
properties.

V. CONCLUSION

An active learning approach to construct moment tensor
potentials based on DFT data for multicomponent systems
has been provided. It facilitates the determination of finite-
temperature elastic properties using fast MLIP molecular
dynamics simulations with near DFT accuracy. The approach
has been applied to study the structural-elastic interplay of
TiZrHfTax high entropy alloys. The proposed approach is
generic and allows one to screen various alloy compositions
over a wide range of temperatures. Its numerical efficiency
allows one to utilize it for large system sizes while still
preserving near-DFT accuracy. The computed temperature-
dependent elastic properties of TiZrHfTax high entropy alloys
feature composition-dependent peculiarities. These peculiar-
ities are connected to the stabilization of the bcc phase with
increasing Ta concentration and temperature. We showed that
based on this insight alloy compositions can be designed
to have nearly temperature-independent elastic properties.
The presented method therefore allows one to advance high-
throughput tools for assessing elastic properties from zero
kelvin [69] to finite-temperature calculations. This will open
new avenues to design elastically temperature-invariant mul-
ticomponent alloys.
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APPENDIX

For completeness we provide here the results for the com-
puted elastic constants C̃11 (Fig. 10) and C̃12 (Fig. 11), as well

FIG. 12. Composition- and temperature-dependent homoge-
nized Voigt elastic modulus EV(x, T ) for TiZrHfTax . Negative values
are cropped to zero and correspond to the dark-blue area.

as the homogenized elastic modulus (Fig. 12) derived from
the Voigt ratio:

EV = (C̃11 − C̃12 + 3C̃44)(C̃11 + 2C̃12)(
2C̃11 + 3C̃12 + C̃44

) .

[1] M. Babanli, F. Prima, P. Vermaut, L. Demchenko, A. Titenko,
S. Huseynov, R. Hajiyev, and V. Huseynov, International Con-
ference on Theory and Applications of Fuzzy Systems and Soft
Computing (Springer, New York, 2018), pp. 937–944.

[2] T. Zhou, Z. Song, and K. Sundmacher, Engineering 5, 1017
(2019).

[3] Y. Cho, W. J. Cho, I. S. Youn, G. Lee, N. J. Singh, and K. S.
Kim, Acc. Chem. Res. 47, 3321 (2014).

[4] W. Yu and A. D. MacKerell, Antibiotics (Springer, New York,
2017), pp. 85–106.

[5] Y. Noda, M. Otake, and M. Nakayama, Sci. Technol. Adv.
Mater. 21, 92 (2020).

[6] G. B. Goh, N. O. Hodas, and A. Vishnu, J. Comput. Chem. 38,
1291 (2017).

[7] E. P. George, D. Raabe, and R. O. Ritchie, Nat. Rev. Mater. 4,
515 (2019).

[8] D. B. Miracle and O. N. Senkov, Acta Mater. 122, 448 (2017).
[9] F. Otto, Y. Yang, H. Bei, and E. P. George, Acta Mater. 61, 2628

(2013).
[10] Y. Ikeda, B. Grabowski, and F. Körmann, Mater. Charact. 147,

464 (2019).
[11] J. Rickman, G. Balasubramanian, C. Marvel, H. Chan, and

M.-T. Burton, J. Appl. Phys. 128, 221101 (2020).
[12] K. Kaufmann, D. Maryanovsky, W. M. Mellor, C. Zhu, A. S.

Rosengarten, T. J. Harrington, C. Oses, C. Toher, S. Curtarolo,
and K. S. Vecchio, npj Comput. Mater. 6, 1 (2020).

[13] D. Ma, M. Yao, K. G. Pradeep, C. C. Tasan, H. Springer, and
D. Raabe, Acta Mater. 98, 288 (2015).

[14] X. Wang, L. Liu, M. Wang, X. Shi, G. Huang, and L. Zhang,
Calphad 48, 89 (2015).

[15] N. Shulumba, O. Hellman, L. Rogström, Z. Raza, F. Tasnádi,
I. A. Abrikosov, and M. Odén, Appl. Phys. Lett. 107, 231901
(2015).

[16] X. Zhang, W. Huang, J. Chen, C. Liu, H. Yu, L. Zhao, and W.
Jiang, Vacuum 157, 312 (2018).

[17] Z. Deng, K. Chu, Q. Li, Y. Onuki, and Q. Sun, Scr. Mater. 187,
197 (2020).

[18] A. Ahadi, R. Khaledialidusti, T. Kawasaki, S. Harjo, A.
Barnoush, and K. Tsuchiya, Acta Mater. 173, 281 (2019).

[19] J. Cui and X. Ren, Appl. Phys. Lett. 105, 061904
(2014).

[20] A. V. Shapeev, E. V. Podryabinkin, K. Gubaev, F. Tasnádi, and
I. A. Abrikosov, New J. Phys. 22, 113005 (2020).

[21] Y. Qiang, S. Jian, X. Hui, and W.-Y. Guo, Trans. Nonferrous
Met. Soc. China 17, 1417 (2007).

[22] S. Wang, M. Wu, D. Shu, G. Zhu, D. Wang, and B. Sun, Acta
Mater. 201, 517 (2020).

[23] N. Wei, T. Jia, X. Zhang, T. Liu, Z. Zeng, and X. Yang, AIP
Adv. 4, 057103 (2014).

[24] D. Korbmacher, A. Glensk, A. I. Duff, M. W. Finnis, B.
Grabowski, and J. Neugebauer, Phys. Rev. B 100, 104110
(2019).

[25] Y. Ikeda, K. Gubaev, J. Neugebauer, B. Grabowski, and F.
Körmann, npj Comput. Mater. 7, 1 (2021).

[26] D. Ma, B. Grabowski, F. Körmann, J. Neugebauer, and D.
Raabe, Acta Mater. 100, 90 (2015).

073801-9

https://doi.org/10.1016/j.eng.2019.02.011
https://doi.org/10.1021/ar400326q
https://doi.org/10.1080/14686996.2020.1724824
https://doi.org/10.1002/jcc.24764
https://doi.org/10.1038/s41578-019-0121-4
https://doi.org/10.1016/j.actamat.2016.08.081
https://doi.org/10.1016/j.actamat.2013.01.042
https://doi.org/10.1016/j.matchar.2018.06.019
https://doi.org/10.1063/5.0030367
https://doi.org/10.1038/s41524-020-0317-6
https://doi.org/10.1016/j.actamat.2015.07.030
https://doi.org/10.1016/j.calphad.2014.11.003
https://doi.org/10.1063/1.4936896
https://doi.org/10.1016/j.vacuum.2018.09.001
https://doi.org/10.1016/j.scriptamat.2020.05.058
https://doi.org/10.1016/j.actamat.2019.05.027
https://doi.org/10.1063/1.4893003
https://doi.org/10.1088/1367-2630/abc392
https://doi.org/10.1016/S1003-6326(07)60287-8
https://doi.org/10.1016/j.actamat.2020.10.044
https://doi.org/10.1063/1.4875024
https://doi.org/10.1103/PhysRevB.100.104110
https://doi.org/10.1038/s41524-021-00502-y
https://doi.org/10.1016/j.actamat.2015.08.050


KONSTANTIN GUBAEV et al. PHYSICAL REVIEW MATERIALS 5, 073801 (2021)

[27] J. Miao, C. Slone, T. Smith, C. Niu, H. Bei, M. Ghazisaeidi, G.
Pharr, and M. J. Mills, Acta Mater. 132, 35 (2017).

[28] F. Tian, L. K. Varga, J. Shen, and L. Vitos, Comput. Mater. Sci.
111, 350 (2016).

[29] A. Ferrari, B. Dutta, K. Gubaev, Y. Ikeda, P. Srinivasan,
B. Grabowski, and F. Körmann, J. Appl. Phys. 128, 150901
(2020).

[30] J. Behler, J. Chem. Phys. 145, 170901 (2016).
[31] Y. Zuo, C. Chen, X. Li, Z. Deng, Y. Chen, J. Behler, G. Csányi,

A. V. Shapeev, A. P. Thompson, M. A. Wood et al., J. Phys.
Chem. A 124, 731 (2020).

[32] I. Novikov, B. Grabowski, F. Kormann, and A. Shapeev,
arXiv:2012.12763.

[33] B. Grabowski, Y. Ikeda, P. Srinivasan, F. Körmann, C.
Freysoldt, A. I. Duff, A. Shapeev, and J. Neugebauer, npj
Comput. Mater. 5, 1 (2019).

[34] S. Chmiela, H. E. Sauceda, I. Poltavsky, K.-R. Müller, and A.
Tkatchenko, Comput. Phys. Commun. 240, 38 (2019).

[35] L. Zhang, J. Han, H. Wang, R. Car, and W. E, Phys. Rev. Lett.
120, 143001 (2018).

[36] M. Gastegger and P. Marquetand, J. Chem. Theory Comput. 11,
2187 (2015).

[37] G. P. Pun, R. Batra, R. Ramprasad, and Y. Mishin, Nat.
Commun. 10, 1 (2019).

[38] T. Lookman, P. V. Balachandran, D. Xue, and R. Yuan, npj
Comput. Mater. 5, 1 (2019).

[39] X.-G. Li, C. Chen, H. Zheng, Y. Zuo, and S. P. Ong, npj
Comput. Mater. 6, 1 (2020).

[40] J. S. Smith, B. Nebgen, N. Mathew, J. Chen, N. Lubbers, L.
Burakovsky, S. Tretiak, H. A. Nam, T. Germann, S. Fensin
et al., Nat. Commun. 12, 1 (2021).

[41] R. Jinnouchi, F. Karsai, and G. Kresse, Phys. Rev. B 100,
014105 (2019).

[42] N. Artrith and J. Behler, Phys. Rev. B 85, 045439 (2012).
[43] J. Vandermause, S. B. Torrisi, S. Batzner, Y. Xie, L. Sun, A. M.

Kolpak, and B. Kozinsky, npj Comput. Mater. 6, 1 (2020).
[44] J. S. Smith, B. Nebgen, N. Lubbers, O. Isayev, and A. E.

Roitberg, J. Chem. Phys. 148, 241733 (2018).
[45] https://mlip.skoltech.ru/download/.
[46] https://gitlab.com/ashapeev/mlip-2/-/tree/mlippy.
[47] I. S. Novikov, K. Gubaev, E. Podryabinkin, and A. V. Shapeev,

Mach. Learn.: Sci. Technol. 2, 025002 (2020).

[48] A. V. Shapeev, Multiscale Model. Simul. 14, 1153 (2016).
[49] K. Gubaev, E. V. Podryabinkin, and A. V. Shapeev, J. Chem.

Phys. 148, 241727 (2018).
[50] K. Gubaev, E. V. Podryabinkin, G. L. Hart, and A. V. Shapeev,

Comput. Mater. Sci. 156, 148 (2019).
[51] R. Battiti and F. Masulli, International Neural Network Confer-

ence (Springer, New York, 1990), pp. 757–760.
[52] E. V. Podryabinkin and A. V. Shapeev, Comput. Mater. Sci. 140,

171 (2017).
[53] S. Goreinov, I. V. Oseledets, D. V. Savostyanov, E. E.

Tyrtyshnikov, and N. Zamarashkin, Matrix Methods: Theory
Algorithms and Applications: Dedicated to the Memory of Gene
Golub (World Scientific, Singapore, 2010), pp. 247–256.

[54] S. Plimpton, J. Comput. Phys. 117, 1 (1995)
[55] http://lammps.sandia.gov.
[56] A. Stukowski, V. V. Bulatov, and A. Arsenlis, Modell. Simul.

Mater. Sci. Eng. 20, 085007 (2012).
[57] G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).
[58] G. Kresse and J. Hafner, Phys. Rev. B 49, 14251 (1994).
[59] G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15

(1996).
[60] G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
[61] P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).
[62] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77,

3865 (1996).
[63] At each composition and temperature, the volume has been

fixed to the equilibrium one from NPT simulations and for each
the configuration after 5000 MD steps has been chosen (time
step 1 fs). The six configurations are chosen from the set of
special quasirandom structures.

[64] A. Zunger, S.-H. Wei, L. G. Ferreira, and J. E. Bernard, Phys.
Rev. Lett. 65, 353 (1990).

[65] A. van de Walle, M. D. Asta, and G. Ceder, Calphad 26, 539
(2002).

[66] A. van de Walle, Calphad 33, 266 (2009).
[67] A. van de Walle, P. Tiwary, M. M. de Jong, D. L. Olmsted,

M. D. Asta, A. Dick, D. Shin, Y. Wang, L.-Q. Chen, and Z.-K.
Liu, Calphad 42, 13 (2013).

[68] M. Born, J. Chem. Phys. 7, 591 (1939).
[69] M. De Jong, W. Chen, T. Angsten, A. Jain, R. Notestine, A.

Gamst, M. Sluiter, C. K. Ande, S. Van Der Zwaag, J. J. Plata
et al., Sci. Data 2, 150009 (2015).

073801-10

https://doi.org/10.1016/j.actamat.2017.04.033
https://doi.org/10.1016/j.commatsci.2015.09.058
https://doi.org/10.1063/5.0025310
https://doi.org/10.1063/1.4966192
https://doi.org/10.1021/acs.jpca.9b08723
http://arxiv.org/abs/arXiv:2012.12763
https://doi.org/10.1038/s41524-019-0218-8
https://doi.org/10.1016/j.cpc.2019.02.007
https://doi.org/10.1103/PhysRevLett.120.143001
https://doi.org/10.1021/acs.jctc.5b00211
https://doi.org/10.1038/s41467-019-10343-5
https://doi.org/10.1038/s41524-019-0153-8
https://doi.org/10.1038/s41524-019-0267-z
https://doi.org/10.1038/s41467-020-20314-w
https://doi.org/10.1103/PhysRevB.100.014105
https://doi.org/10.1103/PhysRevB.85.045439
https://doi.org/10.1038/s41524-020-0283-z
https://doi.org/10.1063/1.5023802
https://mlip.skoltech.ru/download/
https://gitlab.com/ashapeev/mlip-2/-/tree/mlippy
https://doi.org/10.1088/2632-2153/abc9fe
https://doi.org/10.1137/15M1054183
https://doi.org/10.1063/1.5005095
https://doi.org/10.1016/j.commatsci.2018.09.031
https://doi.org/10.1016/j.commatsci.2017.08.031
https://doi.org/10.1006/jcph.1995.1039
http://lammps.sandia.gov
https://doi.org/10.1088/0965-0393/20/8/085007
https://doi.org/10.1103/PhysRevB.47.558
https://doi.org/10.1103/PhysRevB.49.14251
https://doi.org/10.1016/0927-0256(96)00008-0
https://doi.org/10.1103/PhysRevB.54.11169
https://doi.org/10.1103/PhysRevB.50.17953
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevLett.65.353
https://doi.org/10.1016/S0364-5916(02)80006-2
https://doi.org/10.1016/j.calphad.2008.12.005
https://doi.org/10.1016/j.calphad.2013.06.006
https://doi.org/10.1063/1.1750497
https://doi.org/10.1038/sdata.2015.9

