D.M.J. Peeters
58 records found
1
This work proposes a methodology for the characterisation of complex pore features in unidirectional composite prepregs, and provides insights into the interaction between fibre architecture and pores. The method showcased allows to compare spatial distributions at a three-dimens
...
This study investigates a filament-wound tube model incorporating fiber undulation from the filament winding process. The model was analyzed using the finite element method in the linear regime, then compared with the shell model and radial crushing experiment. Results showed tha
...
This work studies the effect of compaction of tapes that have been heated using a laser during automated fibre placement. The deconsolidation has been shown to have a significant effect on the surface roughness, degree of effective intimate contact and void content. This work inv
...
In-situ Automated Fiber Placement (AFP) manufacturing of thermoplastic prepreg tapes has the potential to provide a fast and cost-effective manufacturing solution for large composite structures. However, it is prone to several defects, especially gaps and overlaps. One of the pri
...
Manufacturing variations in the automated fiber placement (AFP) process are one of the causes of gaps and overlaps. These manufacturing variations can be due to robot inaccuracy, tow lateral movement on the roller, tow width variation or tow compaction. An experimental setup was
...
Double-curved composite structures that are manufactured via automated fiber placement, such as pressure vessels, can take advantage of tow steering to reduce weight. This design freedom comes with the cost of adding internal normal stresses to the tow, possibly leading to wrinkl
...
Anisotropic materials formed by living organisms possess remarkable mechanical properties due to their intricate microstructure and directional freedom. In contrast, human-made materials face challenges in achieving similar levels of directionality due to material and manufactura
...
This work aims to improve the flexural behaviour of unidirectional fibre-reinforced laminates by means of coupling an optimization procedure for quasi-isotropic configurations with the design space opened by dispersed-ply orientations. The design approach consists of finding suit
...
Production technologies for Fiber Reinforced Plastics (FRP) have been extensively researched with the goal of achieving light weighting targets and reducing process costs through efficient material utilization. Tailored Fiber Placement (TFP) is one such technology that offers uni
...
Manufacturing variations in the AFP process are one of the causes of gaps and overlaps. These manufacturing variations can be due to robot inaccuracy, tape lateral movement on the roller, tape width variation or tape compaction. These manufacturing variations result in incorrect
...
For pick-and-place processes to become widely implemented in industry a consistent and acceptable product quality needs to be achieved. In the state of the art it is assumed that reinforcements will be in perfect condition at the start of forming or draping. In reality the handli
...
For pick-and-place processes to become widely implemented in industry a consistent and acceptable product quality needs to be achieved. One important quality criterion is the fiber angle deviations in the reinforcement. Handling a reinforcement will subject it to forces due to e.
...
Carbon fibre-reinforced polymer composites (CFRPs) outperform most structural engineering materials in specific stiffness and/or specific strength, especially in their unidirectional configuration. Unidirectional composites can be found as individual structural elements in cables
...
This paper presents the collaborative model-based design of a business jet family. In family design, a trade-off is made between aircraft performance, reducing fuel burn, and commonality, reducing manufacturing costs. The family is designed using Model-Based Systems Engineering (
...
Despite their importance in benchmarking numerical simulations, buckling tests still feature compromises between component-level and high-fidelity large-scale tests. For example, compression-induced buckling tests cannot capture the through-thickness or span-wise stress gradients
...
Buckling test of stiffened panels
Modeling and vibrational correlation testing
Representative stiffened panels are optimized such that multiple buckling modes and failure (using open hole allowables) occur within a range of 10% of the lowest buckling load. This implies the panels cannot be loaded up to the buckling load without risking failure, hence vibrat
...
A computationally-efficient strength optimization method tailoring novel composite laminates using lamination parameters is developed. The method adopts a global p-norm approach to aggregate local failure indices into a global failure index, based on the Tsai-Wu failure criterion
...
A retrofit analysis on a 90 passengers regional jet aircraft is performed through a multidisciplinary collaborative aircraft design and optimization highlighting the impact on costs and performance. Two different activities are accounted for selecting the best aircraft retrofit s
...
Buckling test of stiffened panels
Evaluation of post-buckling and failure by testing and layerwise models
The present paper deals with the buckling and post-buckling analysis of a multilayered composite reinforced panel. The panel, design for aeronautical applications, results in a complex stacking sequence, and the development of a refined model able to describe its geometrical nonl
...
Most MDO problems currently do not include manufacturing as an optimization domain. Within the H2020 project AGILE 4.0 the intent is to bring manufacturing into the MDO domain using MBSE techniques developed within the project. To demonstrate how manufacturing can be brought into
...