Finding new ways to evaluate the variability of microstructures, and its effect on macroscopic properties such as permeability and mechanical performance [1,2] is of increasing interest in the composite field. The variability of microstructural features at a three-dimensional lev
...
Finding new ways to evaluate the variability of microstructures, and its effect on macroscopic properties such as permeability and mechanical performance [1,2] is of increasing interest in the composite field. The variability of microstructural features at a three-dimensional level is not fully understood and its effect on macroscale properties is not well established, and mostly analyzed at a phenomenological level [3]. We introduced in recent work a method based on X-ray Computed Tomography for the threedimensional reconstruction of the fibrous microstructure of unidirectional tapes at a single fibre resolution [4]. A schematic of the workflow is represented in Figure 1. Three descriptors are introduced in the work to describe increasing level of complexity in the microstructural organization, from a single fiber path level with differential tortuosity, to group behavior with collective motion, to fibre network connectivity with length of contact. These descriptors and their interdependence highlight local effects like edge-core segregation in microstructural characteristics. However, in order to achieve a more complete definition of the unidirectional tape domain, understanding of matrix-based features and its interrelation with fiber architecture descriptors is needed. In this work, we expand the methodology of Gomarasca et al. [4], to account for matrix-based phenomena such as tape boundary variability, and void formation and morphology. This will be showcased on a unidirectional composite tape including both fiber-based and matrix-based analysis. These methods enable advanced characterization and modelling of microstructural formation and evolution during composite manufacturing. @en