HB

H.P. Bartling

8 records found

We realize high-fidelity gates for the two-qubit system formed by NV center. Using gate set tomography, we report gate fidelities exceeding 99%, and analyze the origin of the errors.@en
Striving toward a scalable quantum processor, this article presents the first cryo-CMOS quantum bit (qubit) controller targeting color centers in diamond. Color-center qubits enable a modular architecture that allows for the 3-D integration of photonics, cryo-CMOS control electro ...
Color-center quantum bits (qubits), such as the Nitrogen-Vacancy center (NV) in diamond, have demonstrated entanglement between remote (>1.3km) qubits and excellent coherence times [1], all while operating at a few Kelvins. Compared to other qubit technologies typically operat ...
Quantum technologies promise to have a profound impact on society. A quantum computer will be able to solve particular computational problems, the quantum internet brings forth a new, fundamentally secure communication paradigm and quantum sensors enable unprecedented sensitivity ...
Understanding and protecting the coherence of individual quantum systems is a central challenge in quantum science and technology. Over the past decades, a rich variety of methods to extend coherence have been developed. A complementary approach is to look for naturally occurring ...
Quantum networks can enable quantum communication and modular quantum computation. A powerful approach is to use multi-qubit nodes that provide quantum memory and computational power. Nuclear spins associated with defects in diamond are promising qubits for this role. However, de ...
A promising approach for multi-qubit quantum registers is to use optically addressable spins to control multiple dark electron-spin defects in the environment. While recent experiments have observed signatures of coherent interactions with such dark spins, it is an open challenge ...
Nuclear magnetic resonance (NMR) is a powerful method for determining the structure of molecules and proteins1. Whereas conventional NMR requires averaging over large ensembles, recent progress with single-spin quantum sensors2–9 has created the prospect of ...