JR

J.A.D. Randall

7 records found

Spins associated to optically accessible solid-state defects have emerged as a versatile platform for exploring quantum simulation, quantum sensing and quantum communication. Pioneering experiments have shown the sensing, imaging, and control of multiple nuclear spins surrounding ...
Solid-state spin qubits is a promising platform for quantum computation and quantum networks1,2. Recent experiments have demonstrated high-quality control over multi-qubit systems3–8, elementary quantum algorithms8–11 and non-fault-tolerant error ...
The use of the nuclear spins surrounding electron spin qubits as quantum registers and long-lived memories opens the way to new applications in quantum information and biological sensing. Hence, there is a need for generic and robust forms of control of the nuclear registers. Alt ...
Understanding and protecting the coherence of individual quantum systems is a central challenge in quantum science and technology. Over the past decades, a rich variety of methods to extend coherence have been developed. A complementary approach is to look for naturally occurring ...
The discrete time crystal (DTC) is a nonequilibrium phase of matter that spontaneously breaks timetranslation symmetry. Disorder-induced many-body localization can stabilize the DTC phase by breaking ergodicity and preventing thermalization. Here, we observe the hallmark signatur ...
Nuclear magnetic resonance (NMR) is a powerful method for determining the structure of molecules and proteins1. Whereas conventional NMR requires averaging over large ensembles, recent progress with single-spin quantum sensors2–9 has created the prospect of ...
Spins associated with single defects in solids provide promising qubits for quantum-information processing and quantum networks. Recent experiments have demonstrated long coherence times, high-fidelity operations, and long-range entanglement. However, control has so far been limi ...