SV
S.Y.F. Vincent-Bonnieu
31 records found
1
Effect of superficial velocity on liquid injectivity in SAG foam EOR. Part 1
Experimental study
Surfactant-alternating-gas (SAG) is a preferred method of foam injection, which is a promising means of enhanced oil recovery. Liquid injectivity in a SAG process is commonly problematic. Our previous studies suggest that the liquid injectivity can be better than expected due to
...
As foam is injected into an oil reservoir, the region near an injector can become oil-free due to the relatively high capillary number. Foam created in this region encounters oil further out in the reservoir. The impact of oil on foam in porous media is usually investigated by co
...
A surfactant alternating gas (SAG) process is often the injection method for foam, on the basis of its improved injectivity over direct foam injection. In a previous study, we reported coreflood experiments on liquid injectivity after foam flooding and liquid injectivity after in
...
Surfactant-alternating-gas (SAG) is a favored method of foam injection, which has been proved as an efficient way for enhancing oil recovery. However, foam flow is extremely complicated, and there are still unsolved problems for foam application. One is liquid injectivity. Our pr
...
New Capillary Number Definition for Micromodels
The Impact of Pore Microstructure
A new capillary number (N
ca
) definition is proposed for 2-D etched micromodels. We derive the n
...
The propagation of foam in an oil reservoir depends on the creation and stability of the foam in the reservoir, specifically the creation and stability of foam films, or lamellae. As the foam propagates far from the injection well, superficial velocity and pressure gradient decre
...
Dispersed and solubilized oil can impact bulk foam stability differently. Though aromatic components are more soluble in water than straight-chain aliphatic components, solubilized aromatics do not necessarily impact the stability of foam in bulk or porous media, whereas straight
...
Foam can be applied to enhance oil recovery from a reservoir. Currently, to understand and model the behavior of foam in an oil reservoir, experiments need to be conducted in the presence of the specific crude oil, and extrapolating from one crude oil to another is not possible.
...
Surfactant alternating gas (SAG) is often the injection strategy used for injecting foam into a reservoir. However, liquid injectivity can be very poor in SAG, and fracturing of the well can occur. Coreflood studies of liquid injectivity directly following foam injection have bee
...
Foam flow in porous media without oil shows two regimes depending on foam quality (gas fractional flow). Complexity and limited data on foam/oil interactions in porous media greatly restrict understanding of foam in contact with oil. Distinguishing which regimes are affected by o
...
CT coreflood study of foam flow for enhanced oil recovery
The effect of oil type and saturation
We present a CT coreflood study of foam, both pre-generated and generated in-situ, displacing oil, as a function of oil type and saturation. Foam generation and propagation are reflected through sectional pressure measurements. Dual-energy CT imaging monitors in-time phase satura
...
We present a CT coreflood study of foam flow with two representative oils: hexadecane C16 (benign to foam) and a mixture of 80 wt% C16 and 20 wt% oleic acid (OA) (very harmful to foam). The purpose is to understand the transient dynamics of foam, both genera
...
Surfactant-alternating-gas (SAG) is a favored method of foam injection, in part because of excellent gas injectivity. However, liquid injectivity is usually very poor in SAG. We report a core-flood study of liquid injectivity under conditions like those near an injection well in
...
Foam flow in a model porous medium
I. the effect of foam coarsening
Foam structure evolves with time due to gas diffusion between bubbles (coarsening). In a bulk foam, coarsening behaviour is well defined, but there is less understanding of coarsening in confined geometries such as porous media. Previous predictions suggest that coarsening will c
...
Foam flow in a model porous medium
II. the effect of trapped gas
Gas trapping is an important mechanism in both Water or Surfactant Alternating Gas (WAG/SAG) and foam injection processes in porous media. Foams for enhanced oil recovery (EOR) can increase sweep efficiency as they decrease the gas relative permeability, and this is mainly due to
...
Foam generation with flow rate
Effect of surfactant concentration and gas fraction
The propagation of foam in an oil reservoir depends on the creation and stability of the foam in the reservoir, specifically the creation and stability of foam films, or lamellae. As the foam propagates far from in injection well, superficial velocity and pressure gradient decrea
...
Foam can be used for gas mobility control in different subsurface applications. The success of foam-injection process depends on foam-generation and propagation rate inside the porous medium. In some cases, foam properties depend on the history of the flow or concentration of the
...
Effect of permeability on foam-model parameters
An integrated approach from core-flood experiments through to foam diversion calculations
We present a set of steady-state foam-flood experimental data for four sandstones with different permeabilities, ranging between 6 and 1900 mD, and with similar porosity. We derive permeability-dependent foam parameters with two modelling approaches, those of Boeije and Rossen (2
...
We report a simulation study of surfactant-alternating-gas (SAG) foam injection into a waterflooded oil reservoir. We show the effects of oil, and of SAG cycle size and number on sweep efficiency, and the longterm impact of a single surfactant slug on the areal sweep efficiency o
...