FC
Francky Catthoor
43 records found
1
Level-crossing analog-To-digital converters (LC-ADCs) are neuromorphic, event-driven data converters that are gaining much attention for resource-constrained applications where intelligent sensing must be provided at the extreme edge, with tight energy and area budgets. LC-ADCs t
...
This paper optimizes the MNEMOSENE architecture, a compute-in-memory (CiM) tile design integrating computation and storage for increased efficiency. We identify and address bottlenecks in the Row Data (RD) buffer that cause losses in performance. Our proposed approach includes mi
...
Computation-in-Memory (CIM) is an emerging computing paradigm to address memory bottleneck challenges in computer architecture. A CIM unit cannot fully replace a general-purpose processor. Still, it significantly reduces the amount of data transfer between a traditional memory un
...
Spin-transfer torque magnetic random access memory (STT-MRAM) based computation-in-memory (CIM) architectures have shown great prospects for an energy-efficient computing. However, device variations and non-idealities narrow down the sensing margin that severely impacts the compu
...
With the rise of the Internet of Things (IoT), a huge market for so-called smart edge-devices is foreseen for millions of applications, like personalized healthcare and smart robotics. These devices have to bring smart computing directly where the data is generated, while coping
...
We propose a multi-time scale energy management framework for a smart photovoltaic (PV) system that can calculate optimized schedules for battery operation, power purchases, and appliance usage. A smart PV system is a local energy community that includes several buildings and hou
...
Designers typically add design margins to semiconductor memories to compensate for aging. However, the aging impact increases with technology downscaling, leading to the need for higher margins. This results into a negative impact on area, yield, performance, and power consumptio
...
Technological and architectural improvements have been constantly required to sustain the demand of faster and cheaper computers. However, CMOS down-scaling is suffering from three technology walls: leakage wall, reliability wall, and cost wall. On top of that, a performance incr
...
ESRAM Reliability
Why is it still not optimally solved?
As technology scales down, the impact of variability due to process variation and aging increases. In order to guarantee an optimal design with a low failure rate, it is crucial to take into account the impact of these sources of variability. Prior work on SRAM reliability has ma
...
Designers typically add design margins to compensate for chip aging. However, this leads to yield loss (in case of overestimation) or low reliability (in case of underestimation). This paper analyzes the impact of aging on a complete high-performance industrial 14-nm FinFET SRAM.
...
With the growing competition of utility-scale photovoltaic (PV) plants to provide electricity to the grid, accurate energy yield simulation is becoming essential. Apart from irradiance, forced convection can have an equally significant impact on solar cell temperature, which in t
...
Non-uniform conditions within a PV module lead to significant energy losses in conventional topologies. Some of the energy lost due to partial shading can be recovered by installing reconfigurable modules. In order to explore the potential benefits of reconfigurable topologies in
...
Memory designs typically contain design margins to compensate for aging. As aging impact becomes more severe with technology scaling, it is crucial to accurately predict such impact to prevent overestimation or underestimation of the margins. This paper proposes a methodology to
...
Today's computing architectures and device technologies are unable to meet the increasingly stringent demands on energy and performance posed by emerging applications. Therefore, alternative computing architectures are being explored that leverage novel post-CMOS device technolog
...
Designers typically add design margins to memories to compensate for their aging. As the aging impact increases with technology scaling, bigger margins become necessary. However, this negatively impacts area, yield, performance, and power consumption. Alternatively, mitigation sc
...
This paper presents an accurate technique to extensively analyze the impact of time-zero (i.e., global and local variation) and time-dependent (i.e., voltage, temperature, workload, and aging) variation on the offset voltage specification of a memory sense amplifier design using
...
Device aging
A reliability and security concern
Device aging is an important concern in nanoscale designs. Due to aging the electrical behavior of transistors embedded in an integrated circuit deviates from original intended one. This leads to performance degradation in the underlying device, and the ultimate device failure. T
...
Memory designs usually add design margins to compensate for chip aging; this may lead to yield and performance loss (in case of overestimation) or reduced reliability (in case of underestimation). This paper analyzes the impact of aging on cutting edge high performance 14nm FinFE
...
Reconfigurable photovoltaic modules represent an effective solution to improve PV system resilience to partial shading. Indeed, the availability of different configurations increases energy generation under non-uniform conditions. However, the additional components that are activ
...
Photovoltaic energy yield modelling under desert and moderate climates
What-if exploration of different cell technologies
PV module testing under standard conditions is an important and well-established procedure, which plays a vital role in module rating. However, PV modules rarely operate at standard conditions therefore their field performance should be predicted based on long term outdoor monito
...