AS

A. Singh

15 records found

Conventional computing systems involve physically separated storing and processing units. To perform the processing, data is shuttled from the storing unit to the processing unit followed by the actual processing, and the processed data is shuttled back into the storing unit. Unf ...
Smart computing on edge-devices has demonstrated huge potential for various application sectors such as personalized healthcare and smart robotics. These devices aim at bringing smart computing close to the source where the data is generated or stored, while coping with the strin ...
Analog computation-in-memory (CIM) architecture alleviates massive data movement between the memory and the processor, thus promising great prospects to accelerate certain computational tasks in an energy-efficient manner. However, data converters involved in these architectures ...
Computation-in-memory (CIM) paradigm leverages emerging memory technologies such as resistive random access memories (RRAMs) to process the data within the memory itself. This alleviates the memory-processor bottleneck resulting in much higher hardware efficiency compared to von- ...

KrakenOnMem

A Memristor-Augmented HW/SW Framework for Taxonomic Profiling

State-of-the-art taxonomic profilers that comprise the first step in larger-context metagenomic studies have proven to be computationally intensive, i.e., while accurate, they come at the cost of high latency and energy consumption. Table Lookup operation is a primary bottleneck ...
Resistive random access memory (RRAM) based computation-in-memory (CIM) architectures are attracting a lot of attention due to their potential in performing fast and energy-efficient computing. However, the RRAM variability and non-idealities limit the computing accuracy of such ...
Emerging non-volatile resistive RAM (RRAM) device technology has shown great potential to cultivate not only high-density memory storage, but also energy-efficient computing units. However, the unique challenges related to RRAM fabrication process render the traditional memory te ...
We present a 256 × 256 in-memory compute (IMC) core designed and fabricated in 14-nm CMOS technology with backend-integrated multi-level phase change memory (PCM). It comprises 256 linearized current-controlled oscillator (CCO)-based A/D converters (ADCs) at a compact 4-μm pitch ...
Computation-in-Memory (CIM) is an emerging computing paradigm to address memory bottleneck challenges in computer architecture. A CIM unit cannot fully replace a general-purpose processor. Still, it significantly reduces the amount of data transfer between a traditional memory un ...
Computation-In-Memory (CIM) using memristor devices provides an energy-efficient hardware implementation of arithmetic and logic operations for numerous applications, such as neuromorphic computing and database query. However, memristor-based CIM suffers from various non-idealiti ...
Computation-in-memory using memristive devices is a promising approach to overcome the performance limitations of conventional computing architectures introduced by the von Neumann bottleneck which are also known as memory wall and power wall. It has been shown that accelerators ...
Spin-transfer torque magnetic random access memory (STT-MRAM) based computation-in-memory (CIM) architectures have shown great prospects for an energy-efficient computing. However, device variations and non-idealities narrow down the sensing margin that severely impacts the compu ...

System Design for Computation-in-Memory

From Primitive to Complex Functions

In recent years, we are witnessing a trend moving away from conventional computer architectures towards Computation-In-Memory (CIM) based on emerging memristor devices. This is due to the fact that the performance and energy efficiency of traditional computer architectures can no ...

SRIF

Scalable and Reliable Integrate and Fire Circuit ADC for Memristor-Based CIM Architectures

Emerging computation-in-memory (CIM) paradigm offers processing and storage of data at the same physical location, thus alleviating critical memory-processor communication bottlenecks suffered by conventional von-Neumann architecture. Storage of data in a CIM architecture is anal ...
With the rise of the Internet of Things (IoT), a huge market for so-called smart edge-devices is foreseen for millions of applications, like personalized healthcare and smart robotics. These devices have to bring smart computing directly where the data is generated, while coping ...