P. Palensky
271 records found
1
...
The topology of low-voltage distribution networks (LVDNs) is crucial for system analysis, e.g., distributed energy resources (DERs) integration, network hosting capacity analysis, state estimation, and electric vehicle charging management. However, it is frequently unavailable or
...
RL-ADN
A high-performance Deep Reinforcement Learning environment for optimal Energy Storage Systems dispatch in active distribution networks
Deep Reinforcement Learning (DRL) presents a promising avenue for optimizing Energy Storage Systems (ESSs) dispatch in distribution networks. This paper introduces RL-ADN, an innovative open-source library specifically designed for solving the optimal ESSs dispatch in active dist
...
Electrical power grids are vulnerable to cyber attacks, as seen in Ukraine in 2015, 2016, and 2022. These cyber attacks are classified as Advanced Persistent Threats (APTs) with potential disastrous consequences such as a total blackout. However, state-of-the-art intrusion detect
...
The virtual integration of geographically distributed Research Infrastructures (RIs) for joint experiments in the domain of power and energy systems poses numerous challenges, particularly in terms of tool compatibility and user-friendliness. To address some of these challenges,
...
Cyber security risks are emerging in Cyber-Physical power Systems (CPS) due to the increasing integration of cyber and physical infrastructures. Critical component identification is a crucial task for the mitigation and prevention of catastrophic blackouts. In this paper, we prop
...
EV2Gym
A Flexible V2G Simulator for EV Smart Charging Research and Benchmarking
As electric vehicle (EV) numbers rise, concerns about the capacity of current charging and power grid infrastructure grow, necessitating the development of smart charging solutions. While many smart charging simulators have been developed in recent years, only a few support the d
...
Probabilistic modelling of power systems operation and planning processes depends on data-driven methods, which require sufficiently large datasets. When historical data lacks this, it is desired to model the underlying data generation mechanism as a probability distribution to a
...
Electrical power systems are witnessing a paradigm shift from traditional synchronous generators towards an in-creased integration of power electronic interfaced (PEl) generation. As the global community leans towards renewables, ensuring grid stability during this transformation
...
Anomaly detection is of considerable significance in engineering applications, such as the monitoring and control of large-scale energy systems. This article investigates the ability to accurately detect and localize the source of anomalies, using an autoencoder neural network-ba
...
One crucial aspect of Modular Multi-level Converter (MMC)- Bipolar Point-to-Point (BPP) configuration systems is the occurrence and damping of oscillations on the DC side of HVDC networks. These oscillations can arise due to various factors, including the interaction between the
...
Power flow analysis using quantum and digital annealers
A discrete combinatorial optimization approach
Power flow (PF) analysis is a foundational computational method to study the flow of power in an electrical network. This analysis involves solving a set of non-linear and non-convex differential-algebraic equations. State-of-the-art solvers for PF analysis, therefore, face chall
...
This paper investigates the impact of adaptive activation functions on deep learning-based power flow analysis. Specifically, it compares four adaptive activation functions with state-of-the-art activation functions, i.e., ReLU, LeakyReLU, Sigmoid, and Tanh, in terms of loss func
...
Power flow (PF) analysis is a foundational computational method to study the flow of power in an electrical network. This analysis involves solving a set of non-linear and non-convex differential-algebraic equations. State-of-the-art solvers for PF analysis, therefore, face chall
...
Cosimulating Integrated Energy Systems with Heterogeneous Digital Twins
Matching a Connected World
Energy system integration promises in-creased resiliency and the unlocking of synergies, while also contributing to our goal of decarbonization. It is enabled by both old and new technologies, glued together with data and digital services. Hydrolyzers, heat pumps, distributed ren
...
Cyber Security of HVDC Systems
A Review of Cyber Threats, Defense, and Testbeds
High Voltage Direct Current (HVDC) technology is one of the key enablers of the energy transition, especially for offshore wind energy systems. While extensive research on cyber security of High Voltage Alternating Current (HVAC) systems has been conducted, limited research exist
...
Power systems are undergoing rapid digitalization. This introduces new vulnerabilities and cyber threats in future Cyber-Physical Power Systems (CPPS). Some of the most notable incidents include the cyber attacks on the power grid in Ukraine in 2015, 2016, and 2022, which employe
...
This paper explores the potential application of quantum and hybrid quantum–classical neural networks in power flow analysis. Experiments are conducted using two datasets based on 4-bus and 33-bus test systems. A systematic performance comparison is also conducted among quantum,
...
The extensive integration of distributed renewable energy resources (DRES) can lead to several issues in power grids, particularly in distribution grids, due to their inherent intermittency. This paper presents a stochastic simulation-based approach to estimate the maximum permis
...
Anticipating failures is vital for maintaining a reliable power supply. Advanced measurement devices in the grid generate vast data that contains valuable information on grid operations. Initial signatures of an incipient failure are often reflected in this data in the form of el
...
Power grid digitalization introduces new vulnerabilities and cyber security threats. The impact of cyber attacks on power system stability is a topic of growing concern, which is yet to be comprehensively analyzed. Traditional power system stability analysis is based on the impac
...