P. Palensky
266 records found
1
...
Electrical power grids are vulnerable to cyber attacks, as seen in Ukraine in 2015, 2016, and 2022. These cyber attacks are classified as Advanced Persistent Threats (APTs) with potential disastrous consequences such as a total blackout. However, state-of-the-art intrusion detect
...
Cascading failures in power systems are extremely rare occurrences caused by a combination of multiple, low probability events. The looming threat of cyberattacks on power grids, however, may result in unprecedented large-scale cascading failures, leading to a blackout. Therefore
...
Synthetic networks aim to generate realistic projections of real-world networks while concealing the actual system information. Researchers have mainly explored methods to create synthetic power systems. However, with the rapid power grid digitalization, new methods are needed fo
...
This paper explores the potential application of quantum and hybrid quantum–classical neural networks in power flow analysis. Experiments are conducted using two datasets based on 4-bus and 33-bus test systems. A systematic performance comparison is also conducted among quantum,
...
Power flow (PF) analysis is a foundational computational method to study the flow of power in an electrical network. This analysis involves solving a set of non-linear and non-convex differential-algebraic equations. State-of-the-art solvers for PF analysis, therefore, face chall
...
The extensive integration of distributed renewable energy resources (DRES) can lead to several issues in power grids, particularly in distribution grids, due to their inherent intermittency. This paper presents a stochastic simulation-based approach to estimate the maximum permis
...
Anomaly detection is of considerable significance in engineering applications, such as the monitoring and control of large-scale energy systems. This article investigates the ability to accurately detect and localize the source of anomalies, using an autoencoder neural network-ba
...
The virtual integration of geographically distributed RI for joint experiments in the domain of power and energy systems poses numerous challenges, particularly in terms of tool compatibility and user-friendliness. To address some of these challenges, this work presents the devel
...
Anticipating failures is vital for maintaining a reliable power supply. Advanced measurement devices in the grid generate vast data that contains valuable information on grid operations. Initial signatures of an incipient failure are often reflected in this data in the form of el
...
Power flow analysis using quantum and digital annealers
A discrete combinatorial optimization approach
Power flow (PF) analysis is a foundational computational method to study the flow of power in an electrical network. This analysis involves solving a set of non-linear and non-convex differential-algebraic equations. State-of-the-art solvers for PF analysis, therefore, face chall
...
Probabilistic modelling of power systems operation and planning processes depends on data-driven methods, which require sufficiently large datasets. When historical data lacks this, it is desired to model the underlying data generation mechanism as a probability distribution to a
...
To enhance the economic viability of integrated energy systems, it is important to balance risk and reward while ensuring operational flexibility and compliance with regulatory constraints. Developing an integrated risk measurement method for energy trading in energy markets that
...
The increasing proportion of renewable energy introduces both long-term and short-term uncertainty to power systems, which restricts the implementation of energy management systems (EMSs) with high dependency on accurate prediction techniques. A hierarchical online EMS (HEMS) is
...
This paper investigates the impact of adaptive activation functions on deep learning-based power flow analysis. Specifically, it compares four adaptive activation functions with state-of-the-art activation functions, i.e., ReLU, LeakyReLU, Sigmoid, and Tanh, in terms of loss func
...
One crucial aspect of Modular Multi-level Converter (MMC)- Bipolar Point-to-Point (BPP) configuration systems is the occurrence and damping of oscillations on the DC side of HVDC networks. These oscillations can arise due to various factors, including the interaction between the
...
Cyber Security of HVDC Systems
A Review of Cyber Threats, Defense, and Testbeds
High Voltage Direct Current (HVDC) technology is one of the key enablers of the energy transition, especially for offshore wind energy systems. While extensive research on cyber security of High Voltage Alternating Current (HVAC) systems has been conducted, limited research exist
...
Cosimulating Integrated Energy Systems with Heterogeneous Digital Twins
Matching a Connected World
Energy system integration promises in-creased resiliency and the unlocking of synergies, while also contributing to our goal of decarbonization. It is enabled by both old and new technologies, glued together with data and digital services. Hydrolyzers, heat pumps, distributed ren
...
It is challenging to determine the active filter control factors in wind power plants (WPP) to obtain effective harmonic voltage mitigation and avoid over-modulation or system instability problems caused by overlarge feedforward or feedback gains. To address this issue, an active
...
Residential load profiles (RLPs) play an increasingly important role in the optimal operation and planning of distribution systems, particularly with the rising integration of low-carbon energy resources such as PV systems, electric vehicles, small-scale batteries, etc. Despite t
...
Power grid digitalization introduces new vulnerabilities and cyber security threats. The impact of cyber attacks on power system stability is a topic of growing concern, which is yet to be comprehensively analyzed. Traditional power system stability analysis is based on the impac
...