Circular Image

J. Alonso-Mora

114 records found

This study investigates the impact of walking and e-hailing on the scale economies of on-demand mobility services. An analytical framework is developed to i) explicitly characterize the physical interactions between passengers and vehicles in the matching and pickup processes, an ...
Representing the 3D environment with instance-aware semantic and geometric information is crucial for interaction-aware robots in dynamic environments. Nevertheless, creating such a representation poses challenges due to sensor noise, instance segmentation and tracking errors, an ...
Robots will increasingly operate near humans that introduce uncertainties in the motion planning problem due to their complex nature. Optimization-based planners typically avoid humans through collision avoidance chance constraints. This allows the planner to optimize performance ...
We present a sampling-based model predictive control method that uses a generic physics simulator as the dynamical model. In particular, we propose a Model Predictive Path Integral controller (MPPI) that employs the GPU-parallelizable IsaacGym simulator to compute the forward dyn ...
Risk assessment is a crucial component of collision warning and avoidance systems for intelligent vehicles. Reachability-based formal approaches have been developed to ensure driving safety to accurately detect potential vehicle collisions. However, they suffer from over-conserva ...
Motion planning for autonomous robots in tight, interaction-rich, and mixed human-robot environments is challenging. State-of-the-art methods typically separate prediction and planning, predicting other agents’ trajectories first and then planning the ego agent’s motion in the re ...
Control Barrier Functions (CBFs) that provide formal safety guarantees have been widely used for safety-critical systems. However, it is non-trivial to design a CBF. Utilizing neural networks as CBFs has shown great success, but it necessitates their certification as CBFs. In thi ...
Dynamic obstacle avoidance is a popular research topic for autonomous systems, such as micro aerial vehicles and service robots. Accurately evaluating the performance of dynamic obstacle avoidance methods necessitates the establishment of a metric to quantify the environment's di ...

Biased-MPPI

Informing Sampling-Based Model Predictive Control by Fusing Ancillary Controllers

Motion planning for autonomous robots in dynamic environments poses numerous challenges due to uncertainties in the robot's dynamics and interaction with other agents. Sampling-based MPC approaches, such as Model Predictive Path Integral (MPPI) control, have shown promise in addr ...
Ground robots navigating in complex, dynamic environments must compute collision-free trajectories to avoid obstacles safely and efficiently. Nonconvex optimization is a popular method to compute a trajectory in real-time. However, these methods often converge to locally optimal ...
Task and Motion Planning (TAMP) has made strides in complex manipulation tasks, yet the execution robustness of the planned solutions remains overlooked. In this work, we propose a method for reactive TAMP to cope with runtime uncertainties and disturbances. We combine an Active ...
We study the problem of selecting a fleet of robots to service spatially distributed tasks with diverse requirements within time-windows. The problem of allocating tasks to a fleet of potentially heterogeneous robots and finding an optimal sequence for each robot is known as mult ...
The estimation of probability density functions is a fundamental problem in science and engineering. However, common methods such as kernel density estimation (KDE) have been demonstrated to lack robustness, while more complex methods have not been evaluated in multi-modal estima ...
Smart cameras are an essential component in surveillance and monitoring applications, and they have been typically deployed in networks of fixed camera locations. The addition of mobile cameras, mounted on robots, can overcome some of the limitations of static networks such as bl ...
We study the problem of finding statistically distinct plans for stochastic task assignment problems such as online multi-robot pickup and delivery (MRPD) when facing multiple competing objectives. In many real-world settings robot fleets do not only need to fulfil delivery reque ...
This work formally defines the problem of fleet sizing with delays (FSD), where the option of delaying individual tasks within fleet sizing is considered. We prove that the FSD problem is NP-hard and solve a formulation of the FSD problem as a mixed integer linear problem (MILP). ...
Contingency planning, wherein an agent generates a set of possible plans conditioned on the outcome of an uncertain event, is an increasingly popular way for robots to act under uncertainty. In this work we take a game-theoretic perspective on contingency planning, tailored to mu ...
As robots shift from industrial to human-centered spaces, adopting mobile manipulators, which expand workspace capabilities, becomes crucial. In these settings, seamless interaction with humans necessitates compliant control. Two common methods for safe interaction, admittance, a ...
Autonomous mobile robots require predictions of human motion to plan a safe trajectory that avoids them. Because human motion cannot be predicted exactly, future trajectories are typically inferred from real-world data via learning-based approximations. These approximations provi ...

Beyond the last mile

Different spatial strategies to integrate on-demand services into public transport in a simplified city

Integrating on-demand services into public transport networks might be the best way to face the current situation in which these new technologies have increased congestion in most cities. When cooperating with on-demand services rather than competing with them, public transport w ...