Javier Alonso-Mora
114 records found
1
This study investigates the impact of walking and e-hailing on the scale economies of on-demand mobility services. An analytical framework is developed to i) explicitly characterize the physical interactions between passengers and vehicles in the matching and pickup processes, an
...
Representing the 3D environment with instance-aware semantic and geometric information is crucial for interaction-aware robots in dynamic environments. Nevertheless, creating such a representation poses challenges due to sensor noise, instance segmentation and tracking errors, an
...
We present a sampling-based model predictive control method that uses a generic physics simulator as the dynamical model. In particular, we propose a Model Predictive Path Integral controller (MPPI) that employs the GPU-parallelizable IsaacGym simulator to compute the forward dyn
...
RACP
Risk-Aware Contingency Planning with Multi-Modal Predictions
For an autonomous vehicle to operate reliably within real-world traffic scenarios, it is imperative to assess the repercussions of its prospective actions by anticipating the uncertain intentions exhibited by other participants in the traffic environment. Driven by the pronounced
...
Task and Motion Planning (TAMP) has made strides in complex manipulation tasks, yet the execution robustness of the planned solutions remains overlooked. In this work, we propose a method for reactive TAMP to cope with runtime uncertainties and disturbances. We combine an Active
...
The estimation of probability density functions is a fundamental problem in science and engineering. However, common methods such as kernel density estimation (KDE) have been demonstrated to lack robustness, while more complex methods have not been evaluated in multi-modal estima
...
Control Barrier Functions (CBFs) that provide formal safety guarantees have been widely used for safety-critical systems. However, it is non-trivial to design a CBF. Utilizing neural networks as CBFs has shown great success, but it necessitates their certification as CBFs. In thi
...
Ride-sourcing companies have worsened congestion in numerous cities worldwide, as many users are attracted from more sustainable modes. To reverse this trend, it is crucial to leverage the technology of connecting users and vehicles online and use it to strengthen public transpor
...
Autonomous mobile robots require predictions of human motion to plan a safe trajectory that avoids them. Because human motion cannot be predicted exactly, future trajectories are typically inferred from real-world data via learning-based approximations. These approximations provi
...
Contingency planning, wherein an agent generates a set of possible plans conditioned on the outcome of an uncertain event, is an increasingly popular way for robots to act under uncertainty. In this work we take a game-theoretic perspective on contingency planning, tailored to mu
...
Motion planning for autonomous robots in tight, interaction-rich, and mixed human-robot environments is challenging. State-of-the-art methods typically separate prediction and planning, predicting other agents’ trajectories first and then planning the ego agent’s motion in the re
...
We study the problem of finding statistically distinct plans for stochastic task assignment problems such as online multi-robot pickup and delivery (MRPD) when facing multiple competing objectives. In many real-world settings robot fleets do not only need to fulfil delivery reque
...
When designing a motion planner for autonomous robots there are usually multiple objectives to be considered. However, a cost function that yields the desired trade-off between objectives is not easily obtainable. A common technique across many applications is to use a weighted s
...
Ground robots navigating in complex, dynamic environments must compute collision-free trajectories to avoid obstacles safely and efficiently. Nonconvex optimization is a popular method to compute a trajectory in real-time. However, these methods often converge to locally optimal
...
In this paper, we address the problem of real-time motion planning for multiple robotic manipulators that operate in close proximity. We build upon the concept of dynamic fabrics and extend them to multi-robot systems, referred to as Multi-Robot Dynamic Fabrics (MRDF). This geome
...
On-demand ridepooling (ODRP) vehicles follow routes that are fully flexible. However, when the system does not provide door-to-door service and users can be asked to walk, their paths tend to concentrate, particularly along main streets that connect highly demanded areas of the c
...
Many problems in robotics seek to simultaneously optimize several competing objectives. A conventional approach is to create a single cost function comprised of the weighted sum of the individual objectives. Solutions to this scalarized optimization problem are Pareto optimal sol
...
Dynamic obstacle avoidance is a popular research topic for autonomous systems, such as micro aerial vehicles and service robots. Accurately evaluating the performance of dynamic obstacle avoidance methods necessitates the establishment of a metric to quantify the environment's di
...
This paper proposes a decentralized trajectory planning framework for the collision avoidance problem of multiple micro aerial vehicles (MAVs) in environments with static and dynamic obstacles. The framework utilizes spatiotemporal occupancy grid maps (SOGM), which forecast the o
...
Smart cameras are an essential component in surveillance and monitoring applications, and they have been typically deployed in networks of fixed camera locations. The addition of mobile cameras, mounted on robots, can overcome some of the limitations of static networks such as bl
...