LH

6 records found

Quantum interference of electron tunneling occurs in any system where multiple tunneling paths connect states. This unavoidably arises in two-dimensional semiconducting qubit arrays, and must be controlled as a prerequisite for the manipulation and readout of hybrid topological a ...
Cooper pair splitters hold utility as a platform for investigating the entanglement of electrons in Cooper pairs, but probing splitters with voltage-biased Ohmic contacts prevents the retention of electrons from split pairs since they can escape to the drain reservoirs. We report ...
Utilizing dispersive gate sensing (DGS), we investigate the spin-orbit field (BSO) orientation in a many-electron double quantum dot (DQD) defined in an InSb nanowire. While characterizing the interdot tunnel couplings, we find the measured dispersive signal depends on the electr ...
We demonstrate the use of radio-frequency (rf) resonators to measure the capacitance of nanoscale semiconducting devices in field-effect transistor configurations. The rf resonator is attached to the gate or the lead of the device. Consequently, tuning the carrier density in the ...
Superconducting resonators enable fast characterization and readout of mesoscopic quantum devices. Finding ways to perform measurements of interest on such devices using resonators only is therefore of great practical relevance. We report an experimental investigation of an InAs ...
We report direct detection of charge tunneling between a quantum dot and a superconducting island through radio-frequency gate sensing. We are able to resolve spin-dependent quasiparticle tunneling as well as two-particle tunneling involving Cooper pairs. The quantum dot can act ...