Circular Image

P.K. Wilfert

16 records found

Wastewater treatment technologies opened the door for recovery of extracellular polymeric substances (EPS), presenting novel opportunities for use across diverse industrial sectors. Earlier studies showed that a significant amount of phosphorus (P) is recovered within extracted E ...
A theoretical approach is presented to quantify the effect of ionic strength on the swelling and shrinkage of the hydrodynamic coil size of a generic biopolymer. This was conducted in view of extraction methods that often utilize acids and alkali combinations and, therefore, inva ...
The use of the consistency index, as determined from fitting rheological data to the Herschel–Bulkley model, is described such that it may yield systematic trends that allow a very convenient description of the dissipative flow properties of linear and branched (bio)polymers in g ...
Phosphorous not only needs to be removed to prevent eutrophication of wastewater effluent receiving surface water bodies, but it also has to be recovered as a scarce finite reserve. Phosphorus chemical precipitation as NH4MgPO4·6H2O, Ca3
The study evaluated the combined phosphorus, nitrogen, methane, and extracellular polymeric substances (EPS) recovery from aerobic granular sludge (AGS) wastewater treatment plants. About 30% of sludge organics are recovered as EPS and 25–30% as methane (≈260 ml methane/g VS) by ...
Nereda® aerobic granular sludge plants will be urban biorefineries in near future. The development of Kaumera Nereda® Gum extractions from granular sludge was the first step. Kaumera is a biopolymer that can substitute oil derived polymers. Here we share our experiences in the EU ...
Sulfide is frequently suggested as a tool to release and recover phosphate from iron phosphate rich waste streams, such as sewage sludge, although systematic studies on mechanisms and efficiencies are missing. Batch experiments were conducted with different synthetic iron phospha ...
To prevent eutrophication of surface water, phosphate needs to be removed from sewage. Iron (Fe) dosing is commonly used to achieve this goal either as the main strategy or in support of biological removal. Vivianite (Fe(I ...
Kinetics of iron reduction, formation of vivianite and the microbial community in activated sludge from two sewage treatment plants (STPs) with low (STP Leeuwarden, applying enhanced biological phosphate removal, EBPR) and ...
Biogenic iron oxides (BioFeO) formed by Leptothrix sp. and Gallionella sp. were compared with chemically formed iron oxides (ChFeO) for their suitability to remove and recover phosphate from solutions. The ChFeO used for comparison included a commercial iron-based adsorbent (GEH) ...
Phosphate recovery from sewage sludge is essential in a circular economy. Currently, the main focus in centralized municipal wastewater treatment plants (MWTPs) lies on struvite recovery routes, land application of sludge or on technologies that rely on sludge incineration. These ...
The scope of this thesis was to lay the basis for a phosphate recovery technology that can be applied on sewage sludge containing iron phosphate. Such a technology should come with minimal changes to the existing sludge treatment configuration while keeping the use of chemicals o ...
Iron is omnipresent in sewage treatment systems. It can unintentionally be present because of, e.g., groundwater seepage into sewers, or it is intentionally added for odor and corrosion control, phosphate removal, or prevention of hydrogen sulfide emissions. The strong affinity o ...
Iron is an important element for modern sewage treatment, inter alia to remove phosphorus from sewage. However, phosphorus recovery from iron phosphorus containing sewage sludge, without incineration, is not yet economical. We believe, increasing the knowledge about iron-phosphor ...