R. Kortlever
36 records found
1
Carbon-supported nickel and nitrogen co-doped (Ni-N-C) catalysts have been extensively studied as selective and active catalysts for CO2 electroreduction to CO. Most studies have focused on adjusting the coordination structure of Ni-Nx active sites, while the impact of the carbon
...
The analytical tools to quantify CO2RR products are often slow and have high limits of detection. As a result, researchers are forced to extend the duration of their experiments to accumulate sufficient product and surpass these detection limits. This slows down resear
...
Electrochemical ammonia synthesis via the nitrogen reduction reaction (NRR) has been poised as one of the promising technologies for the sustainable production of green ammonia. In this work, we developed extensive process models of fully integrated electrochemical NH
...
Electrochemical CO2 reduction is a promising way of closing the carbon cycle while synthesizing useful commodity chemicals and fuels. One of the possible routes to scale up the process is CO2 reduction at elevated pressure, as this is a way to increase the c
...
Electrolytic bicarbonate conversion holds the promise to integrate carbon capture directly with electrochemical conversion. Most research has focused on improving the faradaic efficiencies of the system, however, the stability of the system has not been thoroughly addressed. Here
...
In this study, the effect of halide anions on the selectivity of the CO2 reduction reaction to CO was investigated in choline-based ethylene glycol solutions containing different halides (ChCl : EG, ChBr : EG, ChI : EG). The CO2RR was studied using silver (A
...
Electrochemical CO2 reduction in non-aqueous solvents is promising due to the increased CO2 solubility of organic-based electrolytes compared to aqueous electrolytes. Here the effect of nine different salts in propylene carbonate (PC) on the CO2 r
...
In this study, we experimentally screen a promising class of intermetallic alloys for the electrochemical reduction of CO2 toward hydrocarbon products. Based on previous DFT-based screening papers, combinations of strongly CO-binding metals such as iron, cobalt, and ni
...
Despite the huge efforts devoted to the development of the electrochemical reduction of CO2 (ECO2R) in the past decade, still many challenges are present, hindering further approaches to industrial applications. This paper gives a perspective on these challenges from a Process Sy
...
Carbon dioxide (CO2) electrolysis on copper (Cu) catalysts has attracted interest due to its direct production of C2+ feedstocks. Using the knowledge that CO2 reduction on copper is primarily a tandem reaction of CO2 to CO and CO to C2+ products, we show that modulating CO concen
...
Extending the lifetime of electrocatalytic materials is a major challenge in electrocatalysis. Here, we employ atomic layer deposition (ALD) to coat the surface of carbon black supported platinum nanoparticles (Pt/CB) with an ultra-thin layer of silicon dioxide (SiO2) to prevent
...
Aqueous electrolytes used in CO2 electroreduction typically have a CO2 solubility of around 34 mM under ambient conditions, contributing to mass transfer limitations in the system. Non-aqueous electrolytes exhibit higher CO2 solubility (by 5–8-fold) and also provide possibilities
...
Nitrogen-doped (N-doped) carbon catalysts have been widely studied for electrochemical CO2 reduction to CO. However, the correlation between the physicochemical properties of N-doped carbon catalysts and their electrocatalytic performance for the CO2RR is st
...
Selective ion separation is a fundamental challenge with applications ranging from the manufacturing of pharmaceuticals & industrial salts to water desalination. In particular, the separation of formate, a primary product of electrochemical carbon dioxide reduction, has attra
...
Towards Higher NH3 Faradaic Efficiency
Selective-Poisoning of HER Active Sites by Co-Feeding CO in NO Electroreduction**
Direct electroreduction of nitric oxide offers a promising avenue to produce valuable chemicals, such as ammonia, which is an essential chemical to produce fertilizers. Direct ammonia synthesis from NO in a polymer electrolyte membrane (PEM) electrolyzer is advantageous for its c
...
Electrochemical CO2 Reduction on Copper in Propylene Carbonate
Influence of Water Content and Temperature on the Product Distribution
Aqueous electrolytes are most commonly used for the CO2 reduction reaction (CO2RR), but suffer from a low CO2 solubility that limits the reaction. Electrochemical CO2 reduction in nonaqueous electrolytes can provide a solution, due to t
...
Electrochemical carbon dioxide (CO2) reduction is a promising route to convert intermittent renewable energy into fuels and valuable chemical products. Separation of CO2 reduction products by ion-selective electrochemical technology may play a decisive role
...
Most research into electrochemical CO2 conversion focusses on improving electrode materials, but neglects the role of the electrolyte. We show the buffer influence on the selectivity of a bimetallic gold–palladium electrode in an effort to elucidate observed inconsistencies betwe
...
Electrochemical CO2 capture is promising for closing the carbon cycle but needs technological advances. In a recent issue of Nature Energy, a novel chemistry for electrochemical CO2 capture is presented, demonstrating low energy consumption and high purity w
...
Abstract: The electrochemical CO2 reduction reaction (CO2RR) has been proposed as a sustainable way of closing the carbon cycle while synthesizing useful commodity chemicals. One of the possible routes to scale up the process is the elevated pressure CO
...