Circular Image

47 records found

Green hydrogen plays a crucial role in decarbonization and the future of low-carbon society. Still, its transport/distribution and cost of production, mainly realized by electrolysis, are major hurdles. Liquid H2 carriers reduce transport/distribution costs but add fur ...
To mitigate global warming and achieve a sustainable society, innovative technologies for efficient CO2 utilization are required. Integrated CO2 capture and reduction (CCR) using dual-function materials (DFMs) is favorable owing to its potentially low energy consumption, capital ...
Multiphasic reaction of bicarbonate hydrogenation to form formate using homogeneous Ru PNP pincer catalyst in a continuous flow tubular reactor is reported. The reaction system consists of three phases. Catalyst is dissolved in toluene while potassium bicarbonate is dissolved in ...
The influence of nanostructures and interaction of Sn and Ir in oxygen evolution catalysts in a polymer electrolyte membrane electrolyzer were investigated. For this aim, two synthesis methods, namely, the one-step solution combustion method and the precipitation-deposition metho ...
Electrochemical ammonia (NH3) synthesis from nitrate (NO3) offers a promising greener alternative to the fossil-fuel-based Haber-Bosch process to support the increasing demand for nitrogen fertilizers while removing environmental waste. Previous ...
Carbon dioxide (CO2) electrolysis on copper (Cu) catalysts has attracted interest due to its direct production of C2+ feedstocks. Using the knowledge that CO2 reduction on copper is primarily a tandem reaction of CO2 to CO and CO to C2+ products, we show that modulating CO concen ...

Integrated CO2 capture and reduction catalysis

Role of γ-Al2O3 support, unique state of potassium and synergy with copper

Carbon dioxide capture and reduction (CCR) process emerges as an efficient catalytic strategy for CO2 capture and conversion to valuable chemicals. K-promoted Cu/Al2O3 catalysts exhibited promising CO2 capture efficiency and highly sele ...
When no hydrogen can reach the Pt catalyst in the anode for the hydrogen oxidation reaction (HOR) of an operating proton exchange membrane fuel cell (PEMFC), the anode potential increases and causes the cell potential to be reversed compared to normal operation conditions. During ...

Spatiotemporal operando UV–vis spectroscopy

Development and mechanistic alternation of CO oxidation on Pt/Al2O3 on the reactor scale

Operando methodologies are widely used in heterogenous catalysis to understand unique state of catalyst materials emerging under specific reaction conditions and to establish catalyst structure-activity relationships. Recent studies highlight the importance of combining multiple ...
To introduce promotional H2O effects for both CH4 rate and C2 selectivity, the OH radical formation, catalyzed through H2O activation with O2 surface species, was critical for modeling selective Mn-K2WO4 ...
Insight into mechanisms of heterogeneously catalyzed reactions holds importance in the development and optimization of new catalytic materials. Yet, the approaches often used in such investigations heavily rely on assumptions concerning the reactor and kinetics. Herein we report ...
Surface intermediate species and oxygen vacancy-assisted mechanism over CeO2 catalyst in the direct dimethyl carbonate (DMC) synthesis from carbon dioxide and methanol are suggested by means of transient spectroscopic methodologies in conjunction with multivariate spectral analys ...

Catalytic Oxidative Coupling of Methane

Heterogeneous or Homogeneous Reaction?

Direct valorization of methane via oxidative coupling of methane (OCM) is an encouraging alternative to conventional oil-based processes for the production of light hydrocarbons (ethane and ethylene). Abundant, inexpensive simple oxides such as MgO and La2O3 ...
Recently, carbon capture and reduction (CCR) technology has gained interest to directly convert CO2 to value-added products without requiring purification of CO2 and its subsequent transportation. CCR to methanol in one dual function material (DFM) poses mec ...
The direct synthesis of methanol via the hydrogenation of CO2, if performed efficiently and selectively, is potentially a powerful technology for CO2 mitigation. Here, we develop an active and selective Cu-Zn/SiO2 catalyst for the hydrogenation of ...

Towards Higher NH3 Faradaic Efficiency

Selective-Poisoning of HER Active Sites by Co-Feeding CO in NO Electroreduction**

Direct electroreduction of nitric oxide offers a promising avenue to produce valuable chemicals, such as ammonia, which is an essential chemical to produce fertilizers. Direct ammonia synthesis from NO in a polymer electrolyte membrane (PEM) electrolyzer is advantageous for its c ...
In spectroscopy and diffraction methods, the signatures of catalytically active sites are often submerged by the contribution of spectator species. In some cases, the signals may also superimpose with each other, hindering proper peak identification. Rationalizing a reaction path ...
The continuous electrochemical NO reduction to ammonia in a PEM cell was investigated in this work. We used a ruthenium-based catalyst at the cathode and an iridium oxide catalyst at the anode. The highest ammonia faradaic efficiency was observed at 1.9 V cell voltage. Adjusting ...
Oxidative dehydrogenation of ethane (ODHE) is an essential reaction in modern society to produce ethylene. The orthorhombic Mo3VOx catalyst (MoVO) was reported as one of the best catalysts for this reaction after a particular redox treatment to generate latt ...
The electrochemical CO2 reduction reaction (CO2RR) is an attractive method to produce renewable fuel and chemical feedstock using clean energy sources. Formate production represents one of the most economical target products from CO2RR but is prim ...