MA

M. Abdinejad

16 records found

Multi-metallic electrocatalysts as emerging class of materials

Opportunities and challenges in the synthesis, characterization, and applications

Nowadays, extensive efforts have been devoted to the fabrication and design of metalbased catalysts with high activity, selectivity, and stability. Theoretical and experimental investigations have empowered the construction of a variety of techniques to tune the catalytic efficie ...
Bipolar membranes in electrochemical CO2 conversion cells enable different reaction environments in the CO2-reduction and O2-evolution compartments. Under ideal conditions, water-splitting in the bipolar membrane allows for platinum-group-metal-free anode materials and high CO2 u ...
Molecular catalysts play a significant role in chemical transformations, utilizing changes in redox states to facilitate reactions. To date molecular electrocatalysts have efficiently produced single-carbon products from CO2 but have struggled to achieve a carbon–carbon coupling ...
Covalent organic frameworks (COFs) are ideal platforms to spatially control the integration of multiple molecular motifs throughout a single nanoporous framework. Despite this design flexibility, COFs are typically synthesized using only two monomers. One bears the functional mot ...
The electrochemical reduction of carbon dioxide (CO2) to value-added chemicals is a promising strategy to mitigate climate change. Metalloporphyrins have been used as a promising class of stable and tunable catalysts for the electrochemical reduction reaction of CO
The electrochemical CO2 reduction (ECO2R) is critical to enabling the widespread use of abundant renewable energy sources. However, in order to successfully implement such technologies on an industrial scale, necessary advancement in both the material and mo ...
Electrochemical reduction of carbon dioxide (CO2RR) product distribution has been found to be dependent on several key factors, such as catalyst surface morphology, stability, and porosity. Metal-modified carbon-based materials have received a lot of attention in CO
The electrochemical CO2 reduction reaction (CO2RR) is an attractive method to produce renewable fuel and chemical feedstock using clean energy sources. Formate production represents one of the most economical target products from CO2RR but is prim ...
Electrochemical reduction of CO2 presents an attractive way to store renewable energy in chemical bonds in a potentially carbon-neutral way. However, the available electrolyzers suffer from intrinsic problems, like flooding and salt accumulation, that must be overcome ...
Despite the advances made in Virtual Reality (VR) technology, the design of VR experiences lacks sufficient focus on accessibility and inclusion as the primary requirements. These are especially important for STEM education, where engaging in experiential activities is essential. ...
Integrating carbon dioxide (CO2) electrolysis with CO2 capture provides exciting new opportunities for energy reductions by simultaneously removing the energy-demanding regeneration step in CO2 capture and avoiding critical issues faced by CO2 gas-fed electrolysers. However, unde ...
Carbon dioxide (CO2) electrolysis is a promising route to utilise captured CO2 as a building block to produce valuable feedstocks and fuels such as carbon monoxide and ethylene. Very recently, CO2 electrolysis has been proposed as an alternative p ...
The electrochemical reduction of carbon dioxide (CO2) to value-added materials has received considerable attention. Both bulk transition-metal catalysts and molecular catalysts affixed to conductive noncatalytic solid supports represent a promising approach toward the ...
The electrochemical reduction of CO2 (CO2RR) on silver catalysts has been demonstrated under elevated current density, longer reaction times, and intermittent operation. Maintaining performance requires that CO2 can access the entire geometric catalyst area, thus maximizing catal ...
Electrochemical reduction of carbon dioxide (CO2) to valuable materials is a promising approach to suppress atmospheric CO2 levels. In order to bring this strategy to a commercial scale, the design of efficient, cost-effective, and robust catalysts is essential. Current advances ...
The ever-growing level of carbon dioxide (CO2) in our atmosphere, is at once a threat and an opportunity. The development of sustainable and cost-effective pathways to convert CO2 to value-added chemicals is central to reducing its atmospheric presence. Elec ...