YW
Yuming Wu
7 records found
1
Electrolyte flooding in porous catalyst layers on gas diffusion electrodes (GDE) limits the stability and high-current performance of CO2 and CO electrolyzers. Here, we demonstrate the in situ electroreduction of graphene oxide (GO) to reduced graphene oxide (r-GO) within a silve
...
To explore the effects of solvent-ionomer interactions in catalyst inks on the structure and performance of Cu catalyst layers (CLs) for CO2 electrolysis, we used a “like for like” rationale to select acetone and methanol as dispersion solvents with a distinct affinity
...
Electrochemical reduction of CO2 presents an attractive way to store renewable energy in chemical bonds in a potentially carbon-neutral way. However, the available electrolyzers suffer from intrinsic problems, like flooding and salt accumulation, that must be overcome
...
Understanding the relationship between gas diffusion electrode (GDE) structures and the performance of electrochemical CO2 reduction reaction (CO2RR) is crucial to developing industrial-scale technologies to convert CO2 to valuable products. We st
...
Achieving operational stability at high current densities remains a challenge in CO2 electrolyzers due to flooding of the gas diffusion layer (GDL) that supports the electrocatalyst. We mitigated electrode flooding at high current densities using a vacuum-assisted infiltration me
...
We report a new strategy to improve the reactivity and durability of a membrane electrode assembly (MEA)-type electrolyzer for CO2 electrolysis to CO by modifying the silver catalyst layer with urea. Our experimental and theoretical results show that mixing urea with the silver c
...
The electrochemical reduction of carbon dioxide (CO2RR) requires access to ample gaseous CO2and liquid water to fuel reactions at high current densities for industrial-scale applications. Substantial improvement of the CO2RR rate has largely arise
...