NS

Neil Sinclair

10 records found

Phonons are envisioned as coherent intermediaries between different types of quantum systems. Engineered nanoscale devices, such as optomechanical crystals (OMCs), provide a platform to utilize phonons as quantum information carriers. Here we demonstrate OMCs in diamond designed ...
The ability to control phonons in solids is key in many fields of quantum science, ranging from quantum information processing to sensing. Phonons often act as a source of noise and decoherence when solid-state quantum systems interact with the phonon bath of their host matrix. I ...
Efficient generation, guiding, and detection of phonons, or mechanical vibrations, are of interest in various fields, including radio-frequency communication, sensing, and quantum information. Diamond is a useful platform for phononics because of the presence of strain-sensitive ...
Rare-earth ion-doped crystals are of great interest for quantum memories, a central component in future quantum repeaters. To assess the promise of 1 % Tm 3+-doped yttrium gallium garnet (Tm:YGG), we report measurements of optical coherence and energy-lev ...
In this work, we fabricate a multimode quantum memory out of a thulium-doped crystal and demonstrate storage of laser pulses of up to 100 µsec. A significant step forward for creating quantum memories with long optical storage times.@en
We demonstrate the transmission of a ∼4-GHz surface acoustic wave across a suspended diamond waveguide. This enables simultaneous coherent mechanical driving of, and optical access to, diamond-based color centers.@en
Long optical storage times are an essential requirement to establish high-rate entanglement distribution over large distances using memory-based quantum repeaters. Rare earth ion-doped crystals are arguably well-suited candidates for building such quantum memories. Toward this en ...
We characterize the optical coherence and energy-level properties of the 795-nm H63 to H43 transition of Tm3+ in a Ti4+:LiNbO3 waveguide at temperatures as low as 0.65 K. Coherence properties are measured with varied temperature, magnetic field, optical excitation power and wavel ...
Long-lived sub-levels of the electronic ground-state manifold of rare-earth ions in crystals can be used as atomic population reservoirs for photon echo-based quantum memories. We measure the dynamics of the Zeeman sublevels of erbium ions that are doped into a lithium niobate wa ...
Large-scale fiber-based quantum networks will likely employ telecommunication-wavelength photons of around 1550 nm wavelength to exchange quantum information between remote nodes, and quantum memories, ideally operating at the same wavelength, that allow the transmission distance ...