KK

Kazuhiro Kuruma

4 records found

We engineer the interaction between phonons and single silicon-vacancy centers using phononic crystals with a complete bandgap spanning 50-70 GHz. We observe a 18-fold extension of single color center's orbital lifetime in the phononic bandgap.@en
The ability to control phonons in solids is key in many fields of quantum science, ranging from quantum information processing to sensing. Phonons often act as a source of noise and decoherence when solid-state quantum systems interact with the phonon bath of their host matrix. I ...
Phonons are envisioned as coherent intermediaries between different types of quantum systems. Engineered nanoscale devices, such as optomechanical crystals (OMCs), provide a platform to utilize phonons as quantum information carriers. Here we demonstrate OMCs in diamond designed ...
We demonstrate optical coupling between a single tin-vacancy (SnV) center in diamond and a free-standing photonic crystal nanobeam cavity. The cavities are fabricated using quasi-isotropic etching and feature experimentally measured quality factors as high as ∼11 000. We investig ...