MV

Michiel R. Van Den Broeke

31 records found

Authored

The Greenland Ice Sheet is losing mass at accelerated rates in the 21st century, making it the largest single contributor to rising sea levels. Faster flow of outlet glaciers has substantially contributed to this loss, with the cause of speedup, and potential for future change, u ...

Compared to other Arctic ice masses, Svalbard glaciers are low-elevated with flat interior accumulation areas, resulting in a marked peak in their current hypsometry (area-elevation distribution) at ~450 m above sea level. Since summer melt consistently exceeds winter snowfall ...

Snow and ice albedo schemes in present-day climate models often lack a sophisticated radiation penetration scheme and do not explicitly include spectral albedo variations. In this study, we evaluate a new snow albedo scheme in the Regional Atmospheric Climate Model (RACMO2) fo ...

Recent research shows increasing decadal ice mass losses from the Greenland and Antarctic Ice Sheets and more generally from glaciers worldwide in the light of continued global warming. Here, in an update of our previous ISMASS paper (Hanna et al., 2013), we review recent obse ...

Brief communication

CESM2 climate forcing (1950-2014) yields realistic Greenland ice sheet surface mass balance

We present a reconstruction of historical (1950–2014) surface mass balance (SMB) of the Greenland ice sheet (GrIS) using a high-resolution regional climate model (RACMO2; ∼ 11 km) to dynamically downscale the climate of the Community Earth System Model version 2 (CESM2; ∼ 111 km) ...

Since the early 1990s, the Greenland ice sheet (GrIS) has been losing mass at an accelerating rate, primarily due to enhanced meltwater runoff following atmospheric warming. Here, we show that a pronounced latitudinal contrast exists in the GrIS response to recent warming. The ...

Surface mass balance (SMB) provides mass input to the surface of the Antarctic and Greenland Ice Sheets and therefore comprises an important control on ice sheet mass balance and resulting contribution to global sea level change. As ice sheet SMB varies highly across multiple ...

The Greenland Ice Sheet has been a major contributor to global sea-level rise in recent decades 1,2, and it is expected to continue to be so 3. Although increases in glacier flow 4–6 and surface melting ...

Transient meltwater accumulation in Greenland spans the entire ice layer, down to the ice bed. As such, this process may have a large impact on Greenland ice dynamics and on the future ice sheet evolution. GrIS subglacial hydrology is an area of active research. Unfortunately, it ...
The Greenland Ice Sheet (GrIS) is currently losing ice mass as the result of changes in the complex ice-climate interactions that have been driven by global climate change. In order to accurately predict future sea level rise, the mechanisms driving the observed mass loss must be ...
Rapid changes in thickness and velocity have been observed at many marine-terminating glaciers in Greenland, impacting the volume of ice they export, or discharge, from the ice sheet. While annual estimates of ice-sheet-wide discharge have been previously derived, higher-resoluti ...
The Canadian Arctic Archipelago comprises multiple small glaciers and ice caps, mostly concentrated on Ellesmere and Baffin Islands in the northern (NCAA, Northern Canadian Arctic Archipelago) and southern parts (SCAA, Southern Canadian Arctic Archipelago) of the archipelago, res ...
Ice sheets are a major component of the Earth System, however they are not yet interactively coupled to most global climate models. Here we present past achievements in this front with the CESM1.0 version as well as first results and challenges with the upcoming CESM2.0, where th ...

We evaluate modelled Greenland ice sheet (GrIS) near-surface climate, surface energy balance (SEB) and surface mass balance (SMB) from the updated regional climate model RACMO2 (1958-2016). The new model version, referred to as RACMO2.3p2, incorporates updated glacier outlines ...

We evaluate modelled Antarctic ice sheet (AIS) near-surface climate, surface mass balance (SMB) and surface energy balance (SEB) from the updated polar version of the regional atmospheric climate model, RACMO2 (1979-2016). The updated model, referred to as RACMO2.3p2, incorpor ...

Melting of the Greenland ice sheet (GrIS) and its peripheral glaciers and ice caps (GICs) contributes about 43% to contemporary sea level rise. While patterns of GrIS mass loss are well studied, the spatial and temporal evolution of GICs mass loss and the acting processes have ...

Brief communication

The global signature of post-1900 land ice wastage on vertical land motion

Melting glaciers, ice caps and ice sheets have made an important contribution to sea-level rise through the last century. Self-attraction and loading effects driven by shrinking ice masses cause a spatially varying redistribution of ocean waters that affects reconstructions of ...

This study presents a data set of daily, 1 km resolution Greenland ice sheet (GrIS) surface mass balance (SMB) covering the period 1958–2015. Applying corrections for elevation, bare ice albedo and accumulation bias, the high-resolution product is statistically downscaled from th ...

We present climate and surface mass balance (SMB) of the Antarctic ice sheet (AIS) as simulated by the global, coupled ocean–atmosphere–land Community Earth System Model (CESM) with a horizontal resolution of ∼ 1 in the past, present and future (1850–2100). CESM c ...

The glacial history of Antarctica during the most recent Milankovitch cycles is poorly constrained relative to the Northern Hemisphere. As a consequence, the contribution of mass changes in the Antarctic ice sheet to global sea-level change and the prediction of its future evo ...