VM

Véronique Michaud

27 records found

Authored

We seek to address how air entrapment mechanisms during infiltration are influenced by the wetting characteristics of the fluid and the pore network formed by the reinforcement. To this end, we evaluated the behavior of two model fluids with different surface tensions, infiltr ...

Editorial

ECCM Research Topic on advanced manufacturing of composites

We propose a new modeling strategy based on hybrid elements for virtual fiber modeling (also known as the digital element method) to predict both kinematics as well as mechanics of woven fabrics. In virtual fiber modeling, yarns are modeled consisting of a number of discrete fibe ...
Radical Induced Cationic Frontal Polymerisation (RICFP) has recently been proposed as a promising strategy for processing of epoxide carbon fibre reinforced polymers. Control of the local heat balance is crucial towards the production of industrial-quality composites, which is ty ...

Radical induced cationic frontal polymerization (RICFP) is considered as a promising method for processing of fiber reinforced polymers (FRPs). Optimization of the local heat flow is required to pave the way for its adaptation to an industrial processing method. In this work w ...

After the spread of COVID-19, surgical masks became highly recommended to the public. They tend to be handled and used multiple times, which may impact their performance. To evaluate this risk, surgical masks of Type IIR were submitted to four simulated treatments: folding, ag ...

Thermoplastic compression resin transfer moulding coupled with injection moulding is an appealing process for the production of thermoplastic composites. However, its implementation at an industrial scale remains challenging as variotherm injection moulding could prevent solid ...

Knowledge of permeability of fibrous microstructures is crucial for predicting the mold fill times and resin flow path in composite manufacturing. Herein we report a method to rapidly predict the permeability of 3D fibrous microstructures. Our method relies on predicting the perm ...

The COVID-19 pandemic resulted in shortages of personal protective equipment and medical devices in the initial phase. Agile small and medium-sized enterprises from regional textile industries reacted quickly. They delivered alternative products such as textile-based community ...

Capillarity plays a crucial role in many natural and engineered systems, ranging from nutrient delivery in plants to functional textiles for wear comfort or thermal heat pipes for heat dissipation. Unlike nano- or microfluidic systems with well-defined pore network geometries ...

Visualization of resin flow progression through fibrous preforms is often sought to elucidate flow patterns and validate models for filling prediction for liquid composite molding processes. Here, conventional X-ray radiography is compared to X-ray phase contrast technique to ima ...

A life cycle analysis of novel lightweight composite processes

Reducing the environmental footprint of automotive structures

In this study, three novel thermoplastic impregnation processes were analyzed towards automotive applications. The first process is thermoplastic compression resin transfer molding in which a glass fiber mat is impregnated in through thickness by a thermoplastic polymer. The s ...

Side-by-side hybrid textiles consist of layers of woven reinforcing fibres and thermoplastic fibres fabrics alternatively stacked on each other, as represented in Figure 1. Press moulding of side-by-side hybrid textiles is a manufacturing method where a near-net shape final part ...
Thin-ply composites are recognized as a key solution for the manufacturing of high-performance composite structures due to the unique mechanical properties and the increased design versatility that they offer. They are obtained with state-of-the-art fiber spreading methods where ...

Permeability of fibrous microstructures is a key material property for predicting the mold fill times and resin flow path during composite manufacturing. In this work, we report an efficient approach to predict the permeability of 3D microstructures from deep learning based pe ...

In-plane permeability of small area (100 × 50 mm) alumina fiber woven fabrics grafted with aligned carbon nanotubes (CNT) was quantified by placing them in series with a glass mat of known permeability during a flow experiment. The methodology was first validated on a referenc ...

Kinematic and mechanical response of dry woven fabrics in through-thickness compression

Virtual fiber modeling with mesh overlay technique and experimental validation

The through-thickness compressive behavior of fabric reinforcements is crucial in liquid composite molding manufacturing processes. Predictive simulations of the compressive response are thus necessary to enable a virtual processing workflow. These are complex however, as the ...

Monitoring fiber reinforced polymer composites (FRPC) during their production and operation is becoming crucial to track the performance of the final parts and optimize the overall life cycle. The challenges associated with integrating multifunctional sensors with the required ...

Direct visualization is often sought to elucidate flow patterns and validate models to predict the filling kinetics during processes whereby a liquid resin infiltrates a textile porous preform. Here, X-ray phase contrast interferometry is evaluated to image in-operando constan ...

In Resin Transfer Molding (RTM), resin precursors of thermoset or, more recently, thermoplastic polymers are generally employed, raising issues related to the chemical reaction taking place during and after part processing. In this study, already polymerized polyamide-6 with l ...