İB

İsmet Baran

19 records found

Saturated transverse permeability of unidirectional rovings for pultrusion

The effect of microstructural evolution through compaction

The transverse permeability of roving/tow-based fiber reinforcement is of great importance for accurate flow modeling in the pultrusion process. This study proposes an experimental approach to characterize the roving-based fiber beds' permeability under different compaction condi ...

Cost-efficient, automated, and sustainable composite profile manufacture

A review of the state of the art, innovations, and future of pultrusion technologies

Over the last 70 years, pultrusion has matured into an industry-leading process when it comes to providing high throughput and automated composite manufacture at a competitive price point. In this paper, we review recent innovations that have advanced pultrusion to a versatile ma ...
This paper concerns non-isothermal flow in a thermoset resin-injection pultrusion process. Supported by temperature measurements from an industrial pultrusion line and a material characterisation study (curing kinetics, chemorheology, and permeability), the material flow was anal ...
Process-induced stress and deformation are critical factors when ensuring product quality and structural integrity of composite profiles manufactured using thermoset pultrusion processes. In this paper, we present a new steady-state 3D-Eulerian numerical framework that enables 9– ...
The effect of thermal contact resistance (TCR) correlated to the degree of intimate contact (DIC) between the incoming tape and the substrate on the temperature history during laser-assisted fiber placement (LAFP) was investigated. A novel experimental methodology was designed to ...
This study presents a detailed material characterization study of a pultrusion specific polyurethane resin system. Firstly, the chemical behaviour was characterized by utilizing differential scanning calorimetry. The cure kinetics was fitted well to an autocatalytic cure kinetics ...
Laser-assisted tape winding (LATW) is a highly automated process for manufacturing tubular-like fiber-reinforced thermoplastic composites such as flywheels and pipes. One of the crucial parameters in the LATW process is the temperature of the nip point at which the incoming prepr ...
Pultruded fiber-reinforced polymer composites are susceptible to microstructural nonuni-formity such as variability in fiber volume fraction (Vf ), which can have a profound effect on process-induced residual stress. Until now, this effect of non-uniform Vf ...
Laser-assisted tape winding/placement (LATW/P) is a process in which fiber-reinforced thermoplastic prepregs are heated by a laser source and in-situ consolidated by a compaction roller. Maintaining a constant temperature along the prepreg width prior to the nip point is utmost n ...
A new global kinematic-optical-thermal (KOT) model is proposed to provide a proper understanding and description of the temperature evolution during laser-assisted tape winding and placement (LATW/LATP) on any arbitrary shaped tooling geometry. Triangular facets are utilized in t ...
The non-uniform temperature and crystallinity distributions present in carbon fiber–reinforced PA12 composite pipes, produced via laser-assisted tape winding (LATW), are investigated in this paper. The width of the laser source is usually larger than the substrate width which cau ...
The temperature history during the laser assisted fiber placement (LAFP) process is very important since it significantly influences the final quality of the structure. Air pockets between subsequent plies, caused by the lack of intimate contact, act as insulators and reduce the ...
The resin injection pultrusion is an automated composite manufacturing method in which the resin is injected in a chamber. The flow and the thermo chemical mechanical (TCM) models have been studied for the pultrusion process to improve the reliability of the final products. Flow ...
A new inverse kinematic-optical-thermal (IKOT) model is introduced to control the process temperature in laser assisted tape winding and placement processes. The optimum time-dependent laser power distribution is obtained by employing a grid of independent laser cells while keepi ...
The exothermic reaction and overheating during radical polymerization of an Elium® resin and glass fiber reinforced Elium® composites are critically evaluated in this work. The polymerization kinetics of the Elium® resin is obtained by performing differential scanning calorimetry ...
Tubular structures of fiber-reinforced polymer composites are utilized in various applications such as risers in the oil and gas industry and hydrogen pressure vessels in the automotive sector. The laser-assisted tape winding process presents an automated and efficient solution f ...
Process induced residual stresses are one of the main sources of defects such as (pre) mature matrix cracking during pultrusion of fiber reinforced polymer composite profiles. Recently, comprehensive process models have been developed to understand and describe the underlying mec ...
Process induced stresses inherently exist in fiber reinforced polymer composites particularly in thick parts due to the presence of non-uniform cure, shrinkage and thermal expansion/contraction during manufacturing. In order to increase the reliability and the performance of the ...
The laser assisted tape winding (LATW) is an automated process for manufacturing fibre-reinforced thermoplastic tubular products, such as pipes and pressure vessels. This process consists of several simultaneous physical phenomena including kinematic, optical and thermal behavior ...