CP
C.E. Paul
92 records found
1
Reductive amination is one of the most synthetically direct routes to access chiral amines. Several Imine Reductases (IREDs) have been discovered to catalyze reductive amination (Reductive Aminases or RedAms), yet they are dependent on the expensive phosphorylated nicotinamide ad
...
Ene-reductases from the old yellow enzyme (OYE) family have been traditionally employed in the reduction of conjugated C═C double bonds. This study explores the underutilized oxidative potential of OYEs, demonstrating their capability to catalyze the enantioselective desaturation
...
Contemporary Biocatalysis heavily relies on enzyme engineering as natural enzymes frequently lack the requisite attributes for effective organic synthesis. The inherent limitations in stability, catalytic activity, and selectivity of wild-type enzymes often hinder their suitabili
...
Cyclopropane fatty acid synthases (CFAS) are a class of S-adenosylmethionine (SAM) dependent methyltransferase enzymes able to catalyse the cyclopropanation of unsaturated phospholipids. Since CFAS enzymes employ SAM as a methylene source to cyclopropanate alkene substrates, they
...
Despite the increasing demand for efficient and sustainable chemical processes, the development of scalable systems using biocatalysis for fine chemical production remains a significant challenge. We have developed a scalable flow system using immobilized enzymes to facilitate fl
...
Ene reductases (EREDs) catalyze asymmetric reduction with exquisite chemo-, stereo-, and regioselectivity. Recent discoveries led to unlocking other types of reactivities toward oxime reduction and reductive C–C bond formation. Exploring nontypical reactions can further expand th
...
One-carbon (C1) feedstocks, such as carbon monoxide (CO), formate (HCO2H), methanol (CH3OH), and methane (CH4), can be obtained either through stepwise electrochemical reduction of CO2 with renewable electricity or via processing of organic side streams. These C1 substrates are i
...
The unmatched chemo-, regio-, and stereoselectivity of enzymes renders them powerful catalysts in the synthesis of chiral active pharmaceutical ingredients (APIs). Inspired by the discovery route toward the LPA1-antagonist BMS-986278, access to the API building block (
...
Biocatalytic asymmetric reduction of C=C and C=O bonds is highly attractive to produce valuable (chiral) chemicals for the fine and pharmaceutical industry, yet occurs at the expense of reduced nicotinamide adenine dinucleotide coenzyme NADPH that requires recycling. Established
...
Hybrid catalysis for enantioselective Baeyer-Villiger oxidation and stereoselective epoxidation
A Cp*Ir complex to fuel FMN and FAD reduction for flavoprotein monooxygenase modules
Taking advantage of the unique properties of two-component flavo-monooxygenases and the ability of [Cp*Ir(bpy-OMe)H]+ to transfer hydrides to reduce flavins, we extended the scope of the pH- and oxygen-robust iridium(iii)-complex to drive the enzymatic reaction of a FM
...
Biocatalytic asymmetric reduction of alkenes in organic solvent is attractive for enantiopurity and product isolation, yet remains under developed. Herein we demonstrate the robustness of an ene reductase immobilised on Celite for the reduction of activated alkenes in micro-aqueo
...
Chiral N-heterocycles are a common motif in many active pharmaceutical ingredients; however, their synthesis often relies on the use of heavy metals. In recent years, several biocatalytic approaches have emerged to reach enantiopurity. Here, we describe the asymmetric synthesis o
...
This review article critically compares two widely used types of catalysis, chemo- and biocatalysis, and provides insights on their greenness according to specified parameters. A comparative analysis of the environmental impact of chemo- and biocatalytic oxyfunctionalisation reac
...
Exciting Enzymes
Current State and Future Perspective of Photobiocatalysis
The recent increase of interest in photocatalysis spread to biocatalysis and triggered a rush for the development of light-dependent enzyme-mediated or enzyme-coupled processes. After several years of intense research on photobiocatalysis, it is time to evaluate the state of the
...
Utilisation of fatty acids generally relies on pre-existing functional groups such as the carboxylate group or C=C-double bonds. Addition of new functionalities into the hydrocarbon part opens up new possibilities for fatty acid valorisation. In this contribution we demonstrate t
...
A peroxygenase-catalysed hydroxylation of organosilanes is reported. The recombinant peroxygenase from Agrocybe aegerita (AaeUPO) enabled efficient conversion of a broad range of silane starting materials in attractive productivities (up to 300 mM h−1), catalyst perfor
...
Native amine dehydrogenases (nat-AmDHs) catalyze the (S)-stereoselective reductive amination of various ketones and aldehydes in the presence of high concentrations of ammonia. Based on the structure of CfusAmDH from Cystobacter fuscus complexed with Nicotinamide adenine dinucleo
...
Biocatalytic pathways for the synthesis of (-)-menthol, the most sold flavor worldwide, are highly sought-after. To access the key intermediate (R)-citronellal used in current major industrial production routes, we established a one-pot bienzymatic cascade from inexpensive gerani
...
In this study, we developed a new bienzymatic reaction to produce enantioenriched phenylethanols. In a first step, the recombinant, unspecific peroxygenase from Agrocybe aegerita (rAaeUPO) was used to oxidise ethylbenzene and its derivatives to the corresponding ketones (prochira
...
We demonstrate a recycling system for synthetic nicotinamide cofactor analogues using a soluble hydrogenase with turnover number of >1000 for reduction of the cofactor analogues by H2. Coupling this system to an ene reductase, we show quantitative conversion of N-ethylmaleimid
...