Mv

M.A. van den Broek

60 records found

Reductive amination is one of the most synthetically direct routes to access chiral amines. Several Imine Reductases (IREDs) have been discovered to catalyze reductive amination (Reductive Aminases or RedAms), yet they are dependent on the expensive phosphorylated nicotinamide ad ...
The biobased-economy aims to create a circular biotechnology ecosystem to transition from a fossil fuel-based to a sustainable industry based on biomass. For this, new microbial cell-factories are essential. We present the draft genome of the CEN.PK-derived Saccharomyces cerevisi ...
Background
Elimination of greenhouse gas emissions in industrial biotechnology requires replacement of carbohydrates by alternative carbon substrates, produced from CO2 and waste streams. Ethanol is already industrially produced from agricultural residues and waste gas and is ...
Chemically defined media for cultivation of Saccharomyces cerevisiae strains are commonly supplemented with a mixture of multiple Class-B vitamins, whose omission leads to strongly reduced growth rates. Fast growth without vitamin supplementation is interesting for industrial app ...
Saccharomyces pastorianus is not a classical taxon, it is an interspecific hybrid resulting from the cross of Saccharomyces cerevisiae and Saccharomyces eubayanus. Exhibiting heterosis for phenotypic traits such as wort α-oligosaccharide consumption and fermentation at low temper ...
Mitochondria fulfil many essential roles and have their own genome, which is expressed as polycistronic transcripts that undergo co- or posttranscriptional processing and splicing. Due to the inherent complexity and limited technical accessibility of the mitochondrial transcripto ...

CRI-SPA

A high-throughput method for systematic genetic editing of yeast libraries

Biological functions are orchestrated by intricate networks of interacting genetic elements. Predicting the interaction landscape remains a challenge for systems biology and new research tools allowing simple and rapid mapping of sequence to function are desirable. Here, we descr ...
The construction of powerful cell factories requires intensive genetic engineering for the addition of new functionalities and the remodeling of native pathways and processes. The present study demonstrates the feasibility of extensive genome reprogramming using modular, speciali ...

Correction to

Class‑II dihydroorotate dehydrogenases from three phylogenetically distant fungi support anaerobic pyrimidine biosynthesis (Fungal Biology and Biotechnology, (2021), 8, 1, (10), 10.1186/s40694-021-00117-4)

Following publication of the original article [1], the authors reported errors in the text of the Results section and in Table 2. It refers to a mutation in a yeast gene as VPS1I410L and to the corresponding change in the Vps1 amino-acid sequence as I410L. The correct ...
An oxygen requirement for de novo biotin synthesis in Saccharomyces cerevisiae precludes the application of biotin-prototrophic strains in anoxic processes that use biotin-free media. To overcome this issue, this study explores introduction of the oxygen-independent Escherichia c ...
The construction of microbial cell factories for sustainable production of chemicals and pharmaceuticals requires extensive genome engineering. Using Saccharomyces cerevisiae, this study proposes synthetic neochromosomes as orthogonal expression platforms for rewiring native cell ...
Background: In most fungi, quinone-dependent Class-II dihydroorotate dehydrogenases (DHODs) are essential for pyrimidine biosynthesis. Coupling of these Class-II DHODHs to mitochondrial respiration makes their in vivo activity dependent on oxygen availability. Saccharomyces cerev ...
Metabolic capabilities of cells are not only defined by their repertoire of enzymes and metabolites, but also by availability of enzyme cofactors. The molybdenum cofactor (Moco) is widespread among eukaryotes but absent from the industrial yeast Saccharomyces cerevisiae. No less ...
Engineering living cells for production of chemicals, enzymes and therapeutics can burden cells due to use of limited native co-factor availability and/or expression burdens, totalling a fitness deficit compared to parental cells encoded through long evolutionary trajectories to ...
The construction of powerful cell factories requires intensive and extensive remodelling of microbial genomes. Considering the rapidly increasing number of these synthetic biology endeavors, there is an increasing need for DNA watermarking strategies that enable the discriminatio ...
The lager-brewing yeast Saccharomyces pastorianus is a hybrid between S. cerevisiae and S. eubayanus with an exceptional degree of aneuploidy. While chromosome copy number variation (CCNV) is present in many industrial Saccharomyces strains and has been linked to various industri ...
The aerobic thermoalkaliphile Caldalkalibacillus thermarum strain TA2.A1 is a member of a separate order of alkaliphilic bacteria closely related to the Bacillales order. Efforts to relate the genomic information of this evolutionary ancient organism to environmental adaptation h ...
D-galacturonate, a key constituent of pectin, is a ubiquitous monomer in plant biomass. Anaerobic, fermentative conversion of D-galacturonate is therefore relevant in natural environments as well as in microbial processes for microbial conversion of pectin-containing agricultural ...
Quantitative physiological studies on Saccharomyces cerevisiae commonly use synthetic media (SM) that contain a set of water-soluble growth factors that, based on their roles in human nutrition, are referred to as B vitamins. Previous work demonstrated that in S. cerevisiae CEN. ...
Biotin, an important cofactor for carboxylases, is essential for all kingdoms of life. Since native biotin synthesis does not always suffice for fast growth and product formation, microbial cultivation in research and industry often requires supplementation of biotin. De novo bio ...