Z. Perko
48 records found
1
Generating synthetic computed tomography for radiotherapy
SynthRAD2023 challenge report
Radiation therapy plays a crucial role in cancer treatment, necessitating precise delivery of radiation to tumors while sparing healthy tissues over multiple days. Computed tomography (CT) is integral for treatment planning, offering electron density data crucial for accurate dos
...
Objective. In head-and-neck cancer intensity modulated proton therapy, adaptive radiotherapy is currently restricted to offline re-planning, mitigating the effect of slow changes in patient anatomies. Daily online adaptations can potentially improve dosimetry. Here, a new, fully
...
Dosimetric advantages of adaptive IMPT vs. Enhanced workload and treatment time
A need for automation
Introduction
In head-and-neck IMPT, trigger-based offline plan adaptation (Offline trigger-based) is often used. Our goal was to compare this to four alternative adaptive strategies for dosimetry, workload and treatment time, considering also foreseen further technological ad ...
In head-and-neck IMPT, trigger-based offline plan adaptation (Offline trigger-based) is often used. Our goal was to compare this to four alternative adaptive strategies for dosimetry, workload and treatment time, considering also foreseen further technological ad ...
A probabilistic evaluation of the Dutch robustness and model-based selection protocols for Head-and-Neck IMPT
A multi-institutional study
Background and purpose: In the Netherlands, 2 protocols have been standardized for PT among the 3 proton centers: a robustness evaluation (RE) to ensure adequate CTV dose and a model-based selection (MBS) approach for IMPT patient-selection. This multi-institutional study investi
...
Objective. To assess the viability of a physics-based, deterministic and adjoint-capable algorithm for performing treatment planning system independent dose calculations and for computing dosimetric differences caused by anatomical changes. Approach. A semi-numerical approach is
...
Background: Fast dose calculation is critical for online and real-time adaptive therapy workflows. While modern physics-based dose algorithms must compromise accuracy to achieve low computation times, deep learning models can potentially perform dose prediction tasks with both hi
...
In this paper we propose a solution to the need for a fast particle transport algorithm in Online Adaptive Proton Therapy capable of cheaply, but accurately computing the changes in patient dose metrics as a result of changes in the system parameters. We obtain the proton phase-s
...
Objective. In radiotherapy, the internal movement of organs between treatment sessions causes errors in the final radiation dose delivery. To assess the need for adaptation, motion models can be used to simulate dominant motion patterns and assess anatomical robustness before del
...
PTV-based VMAT vs. robust IMPT for head-and-neck cancer
A probabilistic uncertainty analysis of clinical plan evaluation with the Dutch model-based selection
Background and purpose: In the Netherlands, head-and-neck cancer (HNC) patients are referred for proton therapy (PT) through model-based selection (MBS). However, treatment errors may compromise adequate CTV dose. Our aims are: (i) to derive probabilistic plan evaluation metrics
...
Robustness analysis of CTV and OAR dose in clinical PBS-PT of neuro-oncological tumors
Prescription-dose calibration and inter-patient variation with the Dutch proton robustness evaluation protocol
Objective. The Dutch proton robustness evaluation protocol prescribes the dose of the clinical target volume (CTV) to the voxel-wise minimum (VWmin) dose of 28 scenarios. This results in a consistent but conservative near-minimum CTV dose (D98%,CTV). In this study, we analyzed (i
...
Objective. Next generation online and real-time adaptive radiotherapy workflows require precise particle transport simulations in sub-second times, which is unfeasible with current analytical pencil beam algorithms (PBA) or Monte Carlo (MC) methods. We present a deep learning bas
...
Background and purpose: In intensity modulated proton therapy (IMPT), the impact of setup errors and anatomical changes is commonly mitigated by robust optimization with population-based setup robustness (SR) settings and offline replanning. In this study we propose and evaluate
...
Background and purpose: Scenario-based robust optimization and evaluation are commonly used in proton therapy (PT) with pencil beam scanning (PBS) to ensure adequate dose to the clinical target volume (CTV). However, a statistically accurate assessment of the clinical application
...
Technical Note
Investigating interplay effects in pencil beam scanning proton therapy with a 4D XCAT phantom within the RayStation treatment planning system
Purpose: Pencil beam scanning (PBS) for moving targets is known to be impacted by interplay effects. Four-dimensional computed tomography (4DCT)-based motion evaluation is crucial for understanding interplay and developing mitigation strategies. Availability of high-quality 4DCTs
...
Breathing interplay effects in Intensity Modulated Proton Therapy (IMPT) arise from the interaction between target motion and the scanning beam. Assessing the detrimental effect of interplay and the clinical robustness of several mitigation techniques requires statistical evaluat
...
In this work, we present the results of a preliminary uncertainty quantification and sensitivity analysis study of the Molten Salt Fast Reactor (MSFR) behavior at steady-state performed by applying a non-intrusive Polynomial Chaos Expansion (PCE) approach. An in-house high-fideli
...
Background and objective: One of the main problems with biomedical signals is the limited amount of patient-specific data and the significant amount of time needed to record the sufficient number of samples needed for diagnostic and treatment purposes. In this study, we present a
...
In this paper, we present a reduced-order modeling approach to study the Molten Salt Fast Reactor (MSFR). Our approach is nonintrusive and based on the proper orthogonal decomposition method. We include adaptivity in selecting the sampling points both in time and parameter space.
...
We present an approach to build a reduced-order model for nonlinear, time-dependent, parametrized partial differential equations in a nonintrusive manner. The approach is based on combining proper orthogonal decomposition (POD) with a Smolyak hierarchical interpolation model for
...
Purpose: To develop and evaluate a fast, automated multi-criterial treatment planning approach for adaptive high-dose-rate (HDR) intracavitary + interstitial brachytherapy (BT) for locally advanced cervical cancer. Methods and materials: Twenty-two previously delivered single fra
...