DL

D. Lathouwers

201 records found

A three-dimensional whole-core transient coupled thermal-hydraulic and neutronics code system for modeling prismatic high-temperature gas-cooled reactors (HTGRs) is presented. The discrete ordinates method code PHANTOM-SN was used to solve the multigroup neutron transport problem ...
HollandPTC is an independent outpatient center for proton therapy, scientific research, and education. Patients with different types of cancer are treated with Intensity Modulated Proton Therapy (IMPT). Additionally, the HollandPTC R&D consortium conducts scientific research ...
Background and purpose:
Understanding the cellular and molecular effect of proton radiation, particularly the increased DNA damage complexity at the distal end of the Bragg curve, is current topic of investigation. This work aims to study in vitro clonogenic survival and DNA ...
This work presents two color LIF temperature measurements for the transient freezing in a square channel under laminar flow conditions. This is the first time non-intrusive temperature measurements were performed within the thermal boundary layer during the transient growth of an ...
This study aims to investigate the capability of U-Nets in improving image reconstruction accuracy for proton range verification within the framework of the NOVO (Next generation imaging for real-time dose verification enabling adaptive proton therapy) project. NOVO aims to enhan ...

Two-dimensional oxygen-diffusion modelling for FLASH proton therapy with pencil beam scanning

Impact of diffusive tissue properties, dose, dose rate and scan patterns

Objective. Oxygen depletion is generally believed to play an important role in the FLASH effect—a differential reduction of the radiosensitivity of healthy tissues, relative to that of the tumour under ultra-high dose-rate (UHDR) irradiation conditions. In proton therapy (PT) wit ...
Objective.The integration of proton beamlines with x-ray imaging/irradiation platforms has opened up possibilities for image-guided Bragg peak irradiations in small animals. Such irradiations allow selective targeting of normal tissue substructures and tumours. However, their sma ...
We present a finite volume adaptive mesh refinement method for solid-liquid phase change problems with convection. The refinement criterion consisted of three different error estimators for the solid-liquid interface, the flow field, and the temperature field respectively. For th ...
Objective. To assess the viability of a physics-based, deterministic and adjoint-capable algorithm for performing treatment planning system independent dose calculations and for computing dosimetric differences caused by anatomical changes. Approach. A semi-numerical approach is ...
We present a discontinuous Galerkin method for melting/solidification problems based on the “linearized enthalpy approach,” which is derived from the conservative form of the energy transport equation and does not depend on the use of a so-called mushy zone. We use the symmetric ...
The design of a molten salt reactor is largely based on CFD simulations. Phase change plays an important role in the safety of the reactor, but numerical modelling of phase change is particularly challenging. Therefore, the knowledge of the margin of error of CFD simulations invo ...

Robustness analysis of CTV and OAR dose in clinical PBS-PT of neuro-oncological tumors

Prescription-dose calibration and inter-patient variation with the Dutch proton robustness evaluation protocol

Objective. The Dutch proton robustness evaluation protocol prescribes the dose of the clinical target volume (CTV) to the voxel-wise minimum (VWmin) dose of 28 scenarios. This results in a consistent but conservative near-minimum CTV dose (D98%,CTV). In this study, we analyzed (i ...
In this paper we propose a solution to the need for a fast particle transport algorithm in Online Adaptive Proton Therapy capable of cheaply, but accurately computing the changes in patient dose metrics as a result of changes in the system parameters. We obtain the proton phase-s ...
Objective. In radiotherapy, the internal movement of organs between treatment sessions causes errors in the final radiation dose delivery. To assess the need for adaptation, motion models can be used to simulate dominant motion patterns and assess anatomical robustness before del ...
Particle therapy (PT) used for cancer treatment can spare healthy tissue and reduce treatment toxicity. However, full exploitation of the dosimetric advantages of PT is not yet possible due to range uncertainties, warranting development of range-monitoring techniques. This study ...
A Geant4 based simulation platform of the Holland Proton Therapy Centre (HollandPTC, Netherlands) R&D beamline (G4HPTC-R&D) was developed to enable the planning, optimisation and advanced dosimetry for radiobiological studies. It implemented a six parameter non-symmetrica ...
For image-guided small animal irradiations, the whole workflow of imaging, organ contouring, irradiation planning, and delivery is typically performed in a single session requiring continuous administration of anaesthetic agents. Automating contouring leads to a faster workflow, ...
Background and purpose: Scenario-based robust optimization and evaluation are commonly used in proton therapy (PT) with pencil beam scanning (PBS) to ensure adequate dose to the clinical target volume (CTV). However, a statistically accurate assessment of the clinical application ...
Over the past two decades, there has been much development in discontinuous Galerkin methods for incompressible flows and for compressible flows with a positive Mach number, but almost no attention has been paid to variable-density flows at low speeds. This paper presents a press ...
Breathing interplay effects in Intensity Modulated Proton Therapy (IMPT) arise from the interaction between target motion and the scanning beam. Assessing the detrimental effect of interplay and the clinical robustness of several mitigation techniques requires statistical evaluat ...