MT

M. Tiberga

13 records found

In this paper, we present a reduced-order modeling approach to study the Molten Salt Fast Reactor (MSFR). Our approach is nonintrusive and based on the proper orthogonal decomposition method. We include adaptivity in selecting the sampling points both in time and parameter space. ...
We present an approach to build a reduced-order model for nonlinear, time-dependent, parametrized partial differential equations in a nonintrusive manner. The approach is based on combining proper orthogonal decomposition (POD) with a Smolyak hierarchical interpolation model for ...
Over the past two decades, there has been much development in discontinuous Galerkin methods for incompressible flows and for compressible flows with a positive Mach number, but almost no attention has been paid to variable-density flows at low speeds. This paper presents a press ...
In this work, we present the results of a preliminary uncertainty quantification and sensitivity analysis study of the Molten Salt Fast Reactor (MSFR) behavior at steady-state performed by applying a non-intrusive Polynomial Chaos Expansion (PCE) approach. An in-house high-fideli ...
The Molten Salt Reactor (MSR) is one of the six Generation-IV nuclear reactor designs. It presents very promising characteristics in terms of safety, sustainability, reliability, and proliferation resistance. Numerous research projects are currently carried out worldwide to bring ...
Verification and validation of multi-physics codes dedicated to fast-spectrum molten salt reactors (MSR) is a very challenging task. Existing benchmarks are meant for single-physics codes, while experimental data for validation are absent. This is concerning, given the importance ...
Accurate methods to solve the Reynolds-Averaged Navier-Stokes (RANS) equations coupled to turbulence models are still of great interest, as this is often the only computationally feasible approach to simulate complex turbulent flows in large engineering applications. In this work ...
We use a novel nonintrusive adaptive Reduced Order Modeling method to build a reduced model for a molten salt reactor system. Our approach is based on Proper Orthogonal Decomposition combined with locally adaptive sparse grids. Our reduced model captures the effect of 27 model pa ...
Performing accurate numerical simulations of molten salt reactors is challenging, especially in case of fast-spectrum designs, due to the unique physics phenomena characterizing these systems. The limitations of codes traditionally used in the nuclear community often require the ...
Uncertainty Quantification (UQ) of numerical simulations is highly relevant in the study and design of complex systems. Among the various approaches available, Polynomial Chaos Expansion (PCE) analysis has recently attracted great interest. It belongs to non-intrusive spectral pr ...
This paper focuses on the freeze-plug, a key safety component of the Molten Salt Fast Reactor, one of the Gen. IV nuclear reactors that must excel in safety, reliability, and sustainability. The freeze-plug is a valve made of frozen fuel salt, designed to melt when an event requi ...
Numerical simulations of fast MSRs constitute a challenging task. In fact, classical codes employed in reactor physics cannot be used, and new dedicated multi-physics tools must be developed, to capture the unique features of these systems: the strong coupling between neutronics ...
This paper focuses on the freeze-plug, a key safety component of the Molten Salt Fast Reactor, one of the six Generation IV nuclear reactors that must excel in safety, reliability, and sustainability. The freeze-plug is a valve made of frozen fuel salt, designed to melt when an e ...