Circular Image

95 records found

The Poisson's ratio and elastic modulus are two parameters determining the elastic behavior of biomaterials. While the effects of elastic modulus on the cell response is widely studied, very little is known regarding the effects of the Poisson's ratio. The micro-architecture of m ...
Climate and justice are interconnected. However, simply raising ethical issues associated with the links between climate change, technology, and health is insufficient. Rather, policies and practices need to consider ethics ahead of time. If it is only added “after the fact,” pol ...
Mechanical and morphological design parameters, such as stiffness or porosity, play important roles in creating orthopedic implants and bone substitutes. However, we have only a limited understanding of how the microarchitecture of porous scaffolds contributes to bone regeneratio ...
Dynamic atomic force microscopy (AFM) is a key platform that enables topological and nanomechanical characterization of novel materials. This is achieved by linking the nanoscale forces that exist between the AFM tip and the sample to specific mathematical functions through model ...
Quantifying the nanomechanical properties of soft-matter using multi-frequency atomic force microscopy (AFM) is crucial for studying the performance of polymers, ultra-thin coatings, and biological systems. Such characterization processes often make use of cantilever's spectral c ...
Optical micromachines have the potential to improve the capabilities of optical tweezers by amplifying forces and allowing for indirect handling and probing of specimens. However, systematic design and testing of micromachine performance is still an emerging field. In this work w ...
Detected kidney stone cases are increasing globally, yet knowledge on the conditions for stone formation is lacking. Experimental approaches mimicking the micro-environmental conditions present in vivo can help sci-entists untangle intertwined physiochemical and biological phenom ...
Optical microrobotics is an emerging field that has the potential to improve upon current optical tweezer studies through avenues such as limiting the exposure of biological molecules of interest to laser radiation and overcoming the current limitations of low forces and unwanted ...
There is a high demand for novel flexible micro-devices for energy harvesting from low-frequency and random mechanical sources. The research of new functional designs is required to strategically enhance the performances and to increase the control on mechanical flexibility. In t ...
Increasing the signal-to-noise ratio in dynamic atomic force microscopy plays a key role in nanomechanical mapping of materials with atomic resolution. In this work, we develop an experimental procedure for increasing the sensitivity of higher harmonics of an atomic-force-microsc ...
Suspended microfluidic resonators enable detection of fluid density and viscosity with high sensitivity. Here, a two-legged suspended microchannel resonator that probes pico-litres of liquid is presented. The higher resonant modes (flexural and torsional) were explored for increa ...
Advances in nanofabrication over the past twenty years have enabled the creation and use of ever-more interesting and useful micromachines. Optical micromachines are a particularly attractive subset of these for researchers in biological and soft-matter sciences, due to their pot ...
Fabricating large areas of geometrically complex and precisely controlled topographies is required for the studies of cell behavior on patterned surfaces. Direct laser writing (DLW) is an advanced 3D-fabrication technique, which facilitates the manufacturing of structures within ...
We introduce a two-channel microfluidic atomic force microscopy (AFM) cantilever that combines the nanomechanical sensing functionality of an AFM cantilever with the ability to manipulate fluids of picolitres or smaller volumes through nanoscale apertures near the cantilever tip. ...
Organ-on-chip (OoC) technology is increasingly used for biomedical research and to speed up the process of bringing a drug from lab to the market. The main fluidic components of an OoC device are microfluidic channels and porous membranes arranged in three dimensions. Current chi ...
In this work, we perform a comprehensive analysis of the robustness of attractors in tapping mode atomic force microscopy. The numerical model is based on cantilever dynamics driven in the Lennard–Jones potential. Pseudo-arc-length continuation and basins of attraction are utiliz ...

Submicron patterns-on-a-chip

Fabrication of a microfluidic device incorporating 3D printed surface ornaments

Manufacturing high throughput in vitro models resembling the tissue microenvironment is highly demanded for studying bone regeneration. Tissues such as bone have complex multiscale architectures inside which cells reside. To this end, engineering a microfluidic platform incorpora ...
This work aims at developing a new and unconventional Sacrificial Stencil Mask (SSM) technology by exploiting Two-Photon Polymerization (2PP) in an IP-L/SU-8 double layer resist system. The process consists of the sequential deposition of two different resists, such as SU-8 and I ...
The realization of biomimetic microenvironments for cell biology applications such as organ-on-chip, in vitro drug screening, and tissue engineering is one of the most fascinating research areas in the field of bioengineering. The continuous evolution of additive manufacturing te ...
We report on an electrical detection method of ultrasensitive carbon nanotube mechanical resonators. The noise floor of the detection method is reduced using a RLC resonator and an amplifier based on a high electron mobility transistor cooled at 4.2 K. This allows us to resolve t ...