GW

Guan Wang

9 records found

As the youngest of the quartet of systems biology tools alongside genomics, transcriptomics, and proteomics, metabolomics provides an immediate and dynamic recording of cells in response to genetic and/or environmental perturbations. Metabolomics study accelerates learning steps ...
While traveling through different zones in large-scale bioreactors, microbes are most likely subjected to fluctuating dissolved oxygen (DO) conditions at the timescales of global circulation time. In this study, to mimic industrial-scale spatial DO gradients, we present a scale-d ...
Bioprocess scale-up is a critical step in process development. However, loss of production performance upon scaling-up, including reduced titer, yield, or productivity, has often been observed, hindering the commercialization of biotech innovations. Recent developments in scale-d ...
Metabolomics aims to address what and how regulatory mechanisms are coordinated to achieve flux optimality, different metabolic objectives as well as appropriate adaptations to dynamic nutrient availability. Recent decades have witnessed that the integration of metabolomics and f ...
Targeted, quantitative metabolomics can, in principle, provide precise information on intracellular metabolite levels, which can be applied to accurate modeling of intracellular processes required in systems biology and me ...
During glucose-limited growth, a substantial input of adenosine triphosphate (ATP) is required for the production of β-lactams by the filamentous fungus Penicillium chrysogenum. Formate dehydrogenase has been confirmed in P. chrysogenum for formate oxidation allowing an extra sup ...
In Penicillium chrysogenum, it has been observed that turnover of storage carbohydrates (trehalose, mannitol, arabitol, erythritol and glycogen) resulting in an extra ATP expenditure might partly account for the reduced penicillin productivity under dynamic cultivation conditions ...

Power input effects on degeneration in prolonged penicillin chemostat cultures

A systems analysis at flux, residual glucose, metabolite, and transcript levels

In the present work, by performing chemostat experiments at 400 and 600 RPM, two typical power inputs representative of industrial penicillin fermentation (P/V, 1.00 kW/m3 in more remote zones and 3.83 kW/m3 in the vicinity of the impellers, respectively) we ...
A powerful approach for the optimization of industrial bioprocesses is to perform detailed simulations integrating large-scale computational fluid dynamics (CFD) and cellular reaction dynamics (CRD). However, complex metabolic kinetic models containing a large number of equations ...