GL
G. Li
26 records found
1
Methane dehydroaromatization catalyzed by Mo/ZSM-5
Location-steered activity and mechanism
This work examined the location-steered catalytic behavior of Mo/ZSM-5 catalyst for one-step methane dehydroaromatization to benzene reaction. The results indicated that α-site is the preferred location for the formation of ethylene, the main intermediate for aromatics production
...
The role of formate species for CO2 hydrogenation is still under debate. Although formate has been frequently observed and commonly proposed as the possible intermediate, there is no definite evidence for the reaction of formate species for methanol production. Here, f
...
The molecular-sized void space of the zeolitic micropores is perfect matrices to encapsulate and stabilize multicomponent and multifunctional complexes that can be used as active sites for a wide range of important catalytic transformations. In this article, we discuss and analyz
...
The reductive amination of benzoic acid and its derivatives would be an effective addition to current synthesis methods for benzylamine. However, with current technology it is very difficult to keep the aromaticity intact when starting from benzoic acid, and salt wastes are often
...
Surface atomic arrangement and coordination of photocatalysts highly exposed to different crystal facets significantly affect the photoreactivity. However, controversies on the true photoreactivity of a specific facet in heterogeneous photocatalysis still exits. Herein, we exempl
...
Single-Atom Pt+ Derived from the Laser Dissociation of a Platinum Cluster
Insights into Nonoxidative Alkane Conversion
In this study, we construct a 193 nm ultraviolet laser dissociation high-resolution mass spectrometry (HRMS) platform to produce Pt+ cations with high efficiency, which is in situ applied for monitoring the "Pt+ + alkanes" reactions (where alkanes include methane, ethane, and pro
...
Lead-free inorganic halide perovskites have triggered appealing interests in various energy-related applications including solar cells and photocatalysis. However, why perovskite-structured materials exhibit excellent photoelectric properties and how the unique crystalline struct
...
Plasmon-induced photocatalysts hold great promise for solar energy conversion owing to their strong light-harvesting ability and tunable optical properties. However, the complex process of interfacial extraction of hot carriers and the roles of metal/semiconductor interfaces in p
...
Producing aromatics directly from the smallest hydrocarbon building block, methane, is attractive because it could help satisfy increasing demand for aromatics while filling the gap created by decreased production from naphtha crackers. The system that catalyzes the direct methan
...
Cu-exchanged zeolites are known to be active in the selective oxidation of methane to methanol at moderate temperatures. Among them, Cu-exchanged mordenite (MOR) is the system that has so far shown the highest methanol yie
...
Structure and Reactivity of the Mo/ZSM-5 Dehydroaromatization Catalyst
An Operando Computational Study
Mo/ZSM-5 is one of the most studied and efficient catalysts for the dehydroaromatization of methane (MDA), but the mechanism of its operation remains controversial. Here, we combine an ab initio thermodynamic analysis with a comprehensive mechanistic density functional theory stu
...
Breaking Linear Scaling Relationships with Secondary Interactions in Confined Space
A Case Study of Methane Oxidation by Fe/ZSM-5 Zeolite
Linear energy scaling laws connect the kinetic and thermodynamic parameters of key elementary steps for heterogeneously catalyzed reactions over defined active sites on open surfaces. Such scaling laws provide a framework for a rapid computational activity screening of families o
...
Mesoporous nitrogen-doped carbon nanoparticles with atomically dispersed iron sites (named mesoNC-Fe) are synthesized via high-temperature pyrolysis of an Fe containing ZIF-8 MOF. Hydrolysis of tetramethyl orthosilicate (TMOS) in the MOF framework prior to pyrolysis plays an esse
...
Hydrogenation of CO2 to methanol utilizing the hydrogen from renewable energy sources offers a promising way to reduce CO2 emissions through the CO2 utilization as a carbon source. However, it is a challenge to convert CO2 to methanol w
...
Ag is a promising catalyst for the production of carbon monoxide (CO) via the electrochemical reduction of carbon dioxide (CO2ER). Herein, we study the role of the formate (HCOO−) intermediate *OCHO, aiming to resolve the discrepancy between the theoretical
...
The active sites on the methane dehydroaromatization (MDA) catalyst Mo/HZSM-5 are very hard to characterize, because they are present in various geometries and sizes and only form under reaction conditions with methane at 700 °C. To address these issues an experimental strategy i
...
Hybrid materials bearing organic and inorganic motifs have been extensively discussed as playgrounds for the implementation of atomically resolved inorganic sites within a confined environment, with an exciting similarity to enzymes. Here, we present the successful design of a si
...
Although the local geometry of Mo in Mo/HZSM-5 has been characterized before, we present a systematic way to manipulate the configuration of Mo and link it to its catalytic properties. The location and geometry of cationic Mo-complexes, the precursor of the active metal site for
...
Periodic density functional theory (DFT) calculations were carried out to investigate the mechanism of methane oxidation with H2O2 over the defined Fe sites in Fe/ZSM-5 zeolite. The initial Fe site is modeled as a [(H2O)2-Fe(III)-(μO)
A new mechanism for glucose dehydration to HMF without the intermediate isomerization to fructose is discussed for surface models of anatase TiO2 using periodic density functional theory calculations. Activation of the glucose at glucose's C3-OH position by titania sta
...