WS

W.A. Smith

102 records found

The electrochemical reduction of carbon dioxide (CO2) presents an opportunity to close the carbon cycle and obtain sustainably sourced carbon compounds. In recent years, copper has received widespread attention as the only catalyst capable of meaningfully producing multi-carbon ( ...
As energy systems across the globe transition toward net-zero emissions, the decarbonization of hard-to-decarbonize sectors, e.g., industry and transportation, is becoming more crucial. Renewable power-driven carbon dioxide (CO2) electrolysis has the potential to facil ...
Defossilizing the chemical industry using air-to-chemical processes offers a promising solution to driving down the emission trajectory to net-zero by 2050. Syngas is a key intermediate in the chemical industry, which can be produced from electrolytic H2 and air-sourced CO2. To t ...
Continued advancements in the electrochemical reduction of CO 2 (CO 2RR) have emphasized that reactivity,selectivity, and stability are not explicit material properties butcombined effects of the catalyst, double-layer, reaction environ-
ment, and system configuration. These ...
Finding alternative ways to tailor the electronic properties of a catalyst to actively and selectively drive reactions of interest has been a growing research topic in the field of electrochemistry. In this Letter, we investigate the tuning of the surface electronic properties of ...
The electrochemical nitrogen reduction reaction (NRR) is a promising alternative to the current greenhouse gas emission intensive process to produce ammonia (NH3) from nitrogen (N2). However, finding an electrocatalyst that promotes NRR over the competing hy ...
Hydrogen permeable electrodes can be utilized for electrolytic ammonia synthesis from dinitrogen, water, and renewable electricity under ambient conditions, providing a promising route toward sustainable ammonia. The understanding of the interactions of adsorbing N and permeating ...
The electrochemical reduction of bicarbonate to renewable chemicals without external gaseous CO2 supply has been motivated as a means of integrating conversion with upstream CO2 capture. The way that CO2 is formed and transported during CO2-mediated bicarbonate reduction in flow ...

Overcoming Nitrogen Reduction to Ammonia Detection Challenges

The Case for Leapfrogging to Gas Diffusion Electrode Platforms

The nitrogen reduction reaction (NRR) is a promising pathway toward the decarbonization of ammonia (NH3) production. However, unless practical challenges related to the detection of NH3 are removed, confidence in published data and experimental throughput will remain low for expe ...
The specific identity of electrolyte cations has many implications in various electrochemical reactions. However, the exact mechanism by which cations affect electrochemical reactions is not agreed upon in the literature. In this report, we investigate the role of cations during ...

Zero-Gap Electrochemical CO2Reduction Cells

Challenges and Operational Strategies for Prevention of Salt Precipitation

Salt precipitation is a problem in electrochemical CO2 reduction electrolyzers that limits their long-term durability and industrial applicability by reducing the active area, causing flooding and hindering gas transport. Salt crystals form when hydroxide generation from electroc ...
Renewably driven, electrochemical conversion of carbon dioxide into value-added products is expected to be a critical tool in global decarbonization. However, theoretical studies based on the computational hydrogen electrode largely ignore the nonlinear effects of the applied pot ...
Direct electrolytic N2 reduction to ammonia (NH3) is a renewable alternative to the Haber-Bosch process. The activity and selectivity of electrocatalysts are evaluated by measuring the amount of NH3 in the electrolyte. Quantitative 1H nuclear magnetic resonance (qNMR) detection r ...
Detailed knowledge about the semiconductor/electrolyte interface in photoelectrochemical (PEC) systems has been lacking because of the inherent difficulty of studying such interfaces, especially during operation. Current understandings of these interfaces are mostly from the extr ...
The field of electrochemical CO2 reduction has been transitioning to industrially relevant scales by changing the architecture of the electrochemical cells and moving away from the traditional aqueous H-cells to membrane electrode assemblies (MEA). The reaction environ ...
Bipolar membranes (BPMs) are gaining interest in energy conversion technologies. These membranes are composed of cation- and anion-exchange layers, with an interfacial layer in between. This gives the freedom to operate in different conditions (pH, concentration, composition) at ...
Electrochemical atomic force microscopy (EC-AFM) enables measurement of electrode topography and mechanical properties during electrochemical reactions. However, for aqueous-based reactions that make gas products, such as CO2 reduction and water splitting into CO/H2, current dens ...
Results of a 2-D transport model for a gas diffusion electrode performing CO2 reduction to CO with a flowing catholyte are presented, including the concentration gradients along the flow cell, spatial distribution of the current density and local pH in the catalyst layer. The mod ...
The deployment of gas diffusion electrodes (GDEs) for the electrochemical CO2 reduction reaction (CO2RR) has enabled current densities an order of magnitude greater than those of aqueous H cells. The gains in production, however, have come with stability challenges due to rapid f ...