Metal containing nanoclusters in zeolites

More Info
expand_more

Abstract

The molecular-sized void space of the zeolitic micropores is perfect matrices to encapsulate and stabilize multicomponent and multifunctional complexes that can be used as active sites for a wide range of important catalytic transformations. In this article, we discuss and analyze the key developments of the last decade in the catalytic chemistry of metal-containing nanoclusters confined in zeolite micropores. We will present a concise summary of the recent developments in the tailored synthesis strategies, the advanced in-situ and operando characterization techniques, the enhanced performances of zeolite stabilized nanoclusters in various catalytic processes, and the application of computational modeling approaches for addressing the puzzle of catalyst-reactivity relationships. The article will be concluded with a brief discussion on the perspective for future developments anticipated for this field.

Files

C022_9780128231449.pdf
(pdf | 12.5 Mb)
- Embargo expired in 01-07-2023
Unknown license