ZV
Zeger Vroon
18 records found
1
Interdigitated back-contacted structure
A different approach towards high-efficiency ultrathin copper indium gallium (di)selenide solar cells
An interdigitated back-contacted (IBC) configuration is proposed for submicron copper indium gallium (di)selenide (CIGS). In a modelling platform, the structure was opto-electrically optimized for maximum efficiency. The results are compared with a reference front/back-contacted
...
The optical losses associated with sub-micron absorbers in CIGS solar cells can be reduced by light management techniques. 3-D optical modelling was used to optimize light in-coupling and internal rear reflectance in a 750-nm thick CIGS reference solar cell. At the front side, an
...
A 3-D optical modelling was calibrated to calculate the light absorption and the total reflection of fabricated CIGS solar cells. Absorption losses at molybdenum (Mo) / CIGS interface were explained in terms of plasmonic waves. To quench these losses, we assumed the insertion of
...
An optical investigation of ultra-thin CIGS solar cells and guidelines for elimination of optical losses is presented. Then, a novel back contacted structure for CIGS solar cells is suggested and optimized for best implied photocurrent density.@en
Multi-junction solar cells are considered for various applications, as they tackle various loss mechanisms for single junction solar cells. These losses include thermalization and non-absorption below the band gap. In this work, a tandem configuration comprising copper-indium-gal
...
Two types of Cu(In,Ga)Se2 (CIGS) solar cells, both designed for implementation in CIGS modules, were subjected to temperatures between 25C and 105C. Simultaneous exposure to AM1.5 illumination allowed the measurement of their electrical parameters at these temperatures
...
The degradation behavior of Mo/MoSe2 layers have been investigated using damp heat exposure. The two studied molybdenum based films with different densities and microstructures were obtained by lifting off Cu(In,Ga)Se2 layers from a bilayer molybdenum stack
...
Copper-indium-gallium-di-selenide (CIGS) is the present record holder in lab-scale thin-film photovoltaics (TF-PV). One of the problems of this PV technology is the scarcity of indium. Multi-junction solar cells allow better spectral utilization of the light spectrum, while the r
...
Degradation rates and mechanisms for molybdenum back contacts and ZnO:Al front contacts exposed to damp heat were obtained from literature and experiments. It was found that molybdenum back contacts with a higher density and covered by a MoSe2 film are more stable than
...
Non-encapsulated CIGS solar cells with different contents of sodium (Na) and potassium (K) were simultaneously exposed to damp heat and illumination. The solar cells with higher alkali (Na, K) content exhibited higher initial conversion efficiencies, but degraded severely within
...
A 'hybrid' degradation setup, which allows the use of humidity, temperature and illumination as loads in order to accelerate degradation of solar cells and modules, has been designed and constructed. In this setup, the current voltage output of photovoltaic samples is automatical
...
CIGS solar cells were exposed to liquid water purged with the atmospheric gases carbon dioxide (CO2), oxygen (O2), nitrogen (N2) and air in order to investigate their chemical degradation behavior. The samples were analyzed by electrical, compositional and optical measurements be
...