A. Chatterjee
2 records found
1
Semiconductor quantum dots (QDs) are a promising platform for multiple different qubit implementations, all of which are voltage controlled by programmable gate electrodes. However, as the QD arrays grow in size and complexity, tuning procedures that can fully autonomously handle the increasing number of control parameters are becoming essential for enabling scalability. We propose a bootstrapping algorithm for initializing a depletion-mode QD device in preparation for subsequent phases of tuning. During bootstrapping, the QD device functionality is validated, all gates are characterized, and the QD charge sensor is made operational. We demonstrate the bootstrapping protocol in conjunction with a coarse-tuning module, showing that the combined algorithm can efficiently and reliably take a cooled-down QD device to a desired global-state configuration in under 8 min, with a success rate of 96%. Finally, by following heuristic approaches to QD device initialization and combining the efficient ray-based measurement with the rapid radio-frequency reflectometry measurements, the proposed algorithm establishes a reference in terms of performance, reliability, and efficiency against which alternative algorithms can be benchmarked.
@enCommissioning studies of the CMS hadron calorimeter have identified sporadic uncharacteristic noise and a small number of malfunctioning calorimeter channels. Algorithms have been developed to identify and address these problems in the data. The methods have been tested on cosmic ray muon data, calorimeter noise data, and single beam data collected with CMS in 2008. The noise rejection algorithms can be applied to LHC collision data at the trigger level or in the offline analysis. The application of the algorithms at the trigger level is shown to remove 90% of noise events with fake missing transverse energy above 100 GeV, which is sufficient for the CMS physics trigger operation.
@en