M. Kaya
4 records found
1
Recommenders with a Mission
Assessing Diversity in News Recommendations
News recommenders help users to find relevant online content and have the potential to fulfilla crucial role in a democratic society, directing the scarce attention of citizens towards the information that is most important to them. Simultaneously, recent concerns about so-called filter bubbles, misinformation and selective exposure are symptomatic of the disruptive potential of these digital news recommenders. Recommender systems can make or break filter bubbles, and as such can be instrumental in creating either a more closed or a more open internet. Current approaches to evaluating recommender systems are often focused on measuring an increase in user clicks and short-term engagement, rather than measuring the user's longer term interest in diverse and important information. This paper aims to bridge the gap between normative notions of diversity, rooted in democratic theory, and quantitative metrics necessary for evaluating the recommender system. We propose a set ofmetrics grounded in social science interpretations of diversity and suggest ways for practical implementations.
@enThe CMS Hadron Calorimeter in the barrel, endcap and forward regions is fully commissioned. Cosmic ray data were taken with and without magnetic field at the surface hall and after installation in the experimental hall, hundred meters underground. Various measurements were also performed during the few days of beam in the LHC in September 2008. Calibration parameters were extracted, and the energy response of the HCAL determined from test beam data has been checked.
@enCommissioning studies of the CMS hadron calorimeter have identified sporadic uncharacteristic noise and a small number of malfunctioning calorimeter channels. Algorithms have been developed to identify and address these problems in the data. The methods have been tested on cosmic ray muon data, calorimeter noise data, and single beam data collected with CMS in 2008. The noise rejection algorithms can be applied to LHC collision data at the trigger level or in the offline analysis. The application of the algorithms at the trigger level is shown to remove 90% of noise events with fake missing transverse energy above 100 GeV, which is sufficient for the CMS physics trigger operation.
@en