PJ

Patrick Jöckel

28 records found

We quantify the contributions of emissions from the transport sector to tropospheric ozone and the hydroxyl radical (OH) by means of model simulations with a global chemistry-climate model equipped with a source attribution method. For the first time we applied a method which als ...
We report on an inconsistency in the latitudinal distribution of aviation emissions between the data products of phases 5 and 6 of the Coupled Model Intercomparison Project (CMIP). Emissions in the CMIP6 data occur at higher latitudes than in the CMIP5 data for all scenarios, yea ...
Aviation produces a net climate warming contribution that comprises multiple forcing terms of mixed sign. Aircraft NOx emissions are associated with both warming and cooling terms, with the short-term increase in O3 induced by NOx emissions being the dominant warming effect. The ...
Hypersonic aircraft flying at Mach 5 to 8 are a means for traveling very long distances in extremely short times and are even significantly faster than supersonic transport (Mach 1.5 to 2.5). Fueled with liquid hydrogen (LH2), their emissions consist of water vapor (H2O), nitroge ...
One possibility to reduce the climate impact of aviation is the avoidance of climate-sensitive regions, which is synonymous with climate-optimised flight planning. Those regions can be identified by algorithmic Climate Change Functions (aCCFs) for nitrogen oxides (NOx), water vap ...
Aviation contributes to 3.5% of anthropogenic climate change in terms of Effective Radiative Forcing (ERF) and 5% in terms of temperature change. Aviation climate impact is expected to increase rapidly due to the growth of air transport sector in most regions of the world and the ...
The resilient growth of air travel demands a comprehensive understanding of the climate effects from aviation emissions. The current level of knowledge of the environmental repercussions of CO2 emissions is considerably higher than that of non-CO2 emissions, which includes nitrog ...
Emissions of aviation include CO2, H2O, NOx, sulfur oxides, and soot. Many studies have investigated the annual mean climate impact of aviation emissions. While CO2 has a long atmospheric residence time and is almost uniformly distributed in the atmosphere, non-CO2 gases and part ...
The aviation industry is an essential contributor to total anthropogenic climate change, and the ever-growing demand for air transport requires serious attention. While efforts have been made to curb CO2 emissions, non-CO2 effects that are even more significant according to recen ...
Water vapor (H2O) is the source of reactive hydrogen radicals in the middle atmosphere, whereas carbon monoxide (CO), being formed by CO2photolysis, is suitable as a dynamical tracer. In the mesosphere, both H2O and CO are sensitive to solar irrad ...
The recent COVID-19 pandemic with its countermeasures, e.g. lock-downs, resulted in decreases in emissions of various trace gases. Here we investigate the changes of ozone over Europe associated with these emission reductions using a coupled global/regional chemistry climate mode ...
Climate-optimized routing is an operational measure to effectively reduce the climate impact of aviation with a slight increase in aircraft operating costs. This study examined variations in the flight characteristics among five aircraft routing strategies and discusses several c ...
The aviation industry is an essential contributor to total anthropogenic climate change, and the ever-growing demand for air transport requires serious attention. While efforts have been made to curb CO2 emissions, non-CO2 effects that are even more significant according to recen ...
Land transport is an important emission source of nitrogen oxides, carbon monoxide, and volatile organic compounds. The emissions of nitrogen oxides affect air quality directly. Further, all of these emissions serve as a precursor for the formation of tropospheric ozone, thus lea ...
Supersonic transport was the subject of intense debate in the 1970s and commercial operation was eventually abandoned until recently due to economic and environmental concerns. Flight emissions at stratospheric altitude differ from tropospheric em ...
Anthropogenic and natural emissions influence the tropospheric ozone budget, thereby affecting air quality and climate. To study the influence of different emission sources on the ozone budget, often source apportionment studies with a tagged tracer approach are performed. Studie ...
Aviation contributes to climate change, and the climate impact of aviation is expected to increase further. Adaptations of aircraft routings in order to reduce the climate impact are an important climate change mitigation measure. The air traffic simulator AirTraf, as a submodel ...
A climate-optimized routing is expected as an operational measure to reduce the climate impact of aviation, whereas this routing causes extra aircraft operating costs. This study performs some air traffic simulations of nine aircraft routing strat ...
We quantify the contribution of land transport and shipping emissions to tropospheric ozone for the first time with a chemistry-climate model including an advanced tagging method (also known as source apportionment), which considers not only the emissions of nitrogen oxides (NOx, ...