Ev

Ernst R H van Eck

13 records found

Chloride-based solid electrolytes are considered interesting candidates for catholytes in all-solid-state batteries due to their high electrochemical stability, which allows the use of high-voltage cathodes without protective coatings. Aliovalent Zr(iv) substitution is a widely a ...
Indium phosphide quantum dots are the main alternative for toxic and restricted Cd-based quantum dots for lighting and display applications, but in the absence of protecting ZnSe and/or ZnS shells, InP quantum dots suffer from low photoluminescence quantum yields. Traditionally, ...
The development of commercial solid-state batteries has to date been hindered by the individual limitations of inorganic and organic solid electrolytes, motivating hybrid concepts. However, the room-temperature conductivity of hybrid solid electrolytes is still insufficient to su ...
The high Li-ion conductivity of the Li7P3S11 sulfide-based solid electrolyte makes it a promising candidate for all-solid-state lithium batteries. The Li-ion transport over electrode-electrolyte and electrolyte-electrolyte interfaces, vital for th ...
The development of high-performance all-solid-state batteries relies on charge transport in solid electrolytes, where transport across grain boundaries often limits their bulk conductivity. The argyrodite Li ...
The increased safety associated with all-solid-state batteries using inorganic ceramic electrolytes make it a promising technology, with potential to replace current commercial battery systems. The key challenges to realize this technology are the development of new solid electro ...
The high Li-ion conductivity of the argyrodite Li6PS5Cl makes it a promising solid electrolyte candidate for all-solid-state Li-ion batteries. For future application, it is essential to identify facile synthesis procedures and to relate the synthesis conditi ...
Based on its high Li-ion conductivity, argyrodite Li6PS5Br is a promising solid electrolyte for all-solid-state batteries. However, more understanding is required on the relation between the solid electrolyte conductivity and the solid-state battery performance with the argyrodit ...
A novel route to prepare highly active and stable N2O decomposition catalysts is presented, based on Fe-exchanged beta zeolite. The procedure consists of liquid phase Fe(III) exchange at low pH. By varying the pH systematically from 3.5 to 0, using nitric acid during e ...
Solid-state batteries potentially offer increased lithium-ion battery energy density and safety as required for large-scale production of electrical vehicles. One of the key challenges toward high-performance solid-state batteries is the large impedance posed by the electrode-ele ...
Tetragonal and cubic phase Na3PS4 sodium electrolytes were successfully prepared by a relatively low rotation speed mechanical milling (400 rpm) route, aiming at homogeneous materials. The influence of the mechanical milling and annealing on the structure an ...

Unravelling Li-Ion Transport from Picoseconds to Seconds

Bulk versus Interfaces in an Argyrodite Li6PS5Cl-Li2S All-Solid-State Li-Ion Battery

One of the main challenges of all-solid-state Li-ion batteries is the restricted power density due to the poor Li-ion transport between the electrodes via the electrolyte. However, to establish what diffusional process is the bottleneck for Li-ion transport requires the ability t ...
Amorphous titanium oxide nanoparticles were prepared from titanium isopropoxide. In situ measurements reveal an extraordinary high capacity of 810 mAh/g on the first discharge. Upon cycling at a charge/discharge rate of 33.5 mA/g, this capacity gradually decreases to 200 mAh/g af ...